BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30530378)

  • 1. Correlation-Aware Sparse and Low-Rank Constrained Multi-Task Learning for Longitudinal Analysis of Alzheimer's Disease.
    Jiang P; Wang X; Li Q; Jin L; Li S
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1450-1456. PubMed ID: 30530378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease.
    Cao P; Liu X; Liu H; Yang J; Zhao D; Huang M; Zaiane O
    Comput Methods Programs Biomed; 2018 Aug; 162():19-45. PubMed ID: 29903486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Group Guided Fused Laplacian Sparse Group Lasso for Modeling Alzheimer's Disease Progression.
    Liu X; Wang J; Ren F; Kong J
    Comput Math Methods Med; 2020; 2020():4036560. PubMed ID: 32104201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fused Group Lasso Regularized Multi-Task Feature Learning and Its Application to the Cognitive Performance Prediction of Alzheimer's Disease.
    Liu X; Cao P; Wang J; Kong J; Zhao D
    Neuroinformatics; 2019 Apr; 17(2):271-294. PubMed ID: 30284672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relational-Regularized Discriminative Sparse Learning for Alzheimer's Disease Diagnosis.
    Lei B; Yang P; Wang T; Chen S; Ni D
    IEEE Trans Cybern; 2017 Apr; 47(4):1102-1113. PubMed ID: 28092591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longitudinal score prediction for Alzheimer's disease based on ensemble correntropy and spatial-temporal constraint.
    Lei B; Hou W; Zou W; Li X; Zhang C; Wang T
    Brain Imaging Behav; 2019 Feb; 13(1):126-137. PubMed ID: 29582337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporally Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer's Disease.
    Jie B; Liu M; Liu J; Zhang D; Shen D
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):238-249. PubMed ID: 27093313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment.
    Xu L; Wu X; Chen K; Yao L
    Comput Methods Programs Biomed; 2015 Nov; 122(2):182-90. PubMed ID: 26298855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship Induced Multi-Template Learning for Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment.
    Liu M; Zhang D; Shen D
    IEEE Trans Med Imaging; 2016 Jun; 35(6):1463-74. PubMed ID: 26742127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures.
    Cao P; Liu X; Yang J; Zhao D; Huang M; Zhang J; Zaiane O
    Comput Biol Med; 2017 Dec; 91():21-37. PubMed ID: 29031664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discriminative self-representation sparse regression for neuroimaging-based alzheimer's disease diagnosis.
    Zhu X; Suk HI; Lee SW; Shen D
    Brain Imaging Behav; 2019 Feb; 13(1):27-40. PubMed ID: 28624881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph-guided joint prediction of class label and clinical scores for the Alzheimer's disease.
    Yu G; Liu Y; Shen D
    Brain Struct Funct; 2016 Sep; 221(7):3787-801. PubMed ID: 26476928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Instance-Based Representation Using Multiple Kernel Learning for Predicting Conversion to Alzheimer Disease.
    Collazos-Huertas D; Cárdenas-Peña D; Castellanos-Dominguez G
    Int J Neural Syst; 2019 Mar; 29(2):1850042. PubMed ID: 30415632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of Alzheimer's disease and prediction of mild cognitive impairment-to-Alzheimer's conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm.
    Beheshti I; Demirel H; Matsuda H;
    Comput Biol Med; 2017 Apr; 83():109-119. PubMed ID: 28260614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling disease progression via multi-task learning.
    Zhou J; Liu J; Narayan VA; Ye J;
    Neuroimage; 2013 Sep; 78():233-48. PubMed ID: 23583359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal Tensor Multi-Task Learning for Predicting Alzheimer's Disease in a Longitudinal study.
    Zhang Y; Zhou M; Liu T; Lanfranchi V; Yang P
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():979-985. PubMed ID: 36086566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Modality Sparse Representation for Alzheimer's Disease Classification.
    Kwak K; Yun HJ; Park G; Lee JM;
    J Alzheimers Dis; 2018; 65(3):807-817. PubMed ID: 29562503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alzheimer's Disease Computer-Aided Diagnosis: Histogram-Based Analysis of Regional MRI Volumes for Feature Selection and Classification.
    Ruiz E; Ramírez J; Górriz JM; Casillas J;
    J Alzheimers Dis; 2018; 65(3):819-842. PubMed ID: 29966190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint High-Order Multi-Task Feature Learning to Predict the Progression of Alzheimer's Disease.
    Brand L; Wang H; Huang H; Risacher S; Saykin A; Shen L;
    Med Image Comput Comput Assist Interv; 2018 Sep; 11070():555-562. PubMed ID: 31179446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linearized and Kernelized Sparse Multitask Learning for Predicting Cognitive Outcomes in Alzheimer's Disease.
    Liu X; Cao P; Yang J; Zhao D
    Comput Math Methods Med; 2018; 2018():7429782. PubMed ID: 29623103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.