BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 30530379)

  • 1. Moving-Tolerant Augmented Reality Surgical Navigation System Using Autostereoscopic Three-Dimensional Image Overlay.
    Ma C; Chen G; Zhang X; Ning G; Liao H
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2483-2493. PubMed ID: 30530379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation.
    Wang J; Suenaga H; Liao H; Hoshi K; Yang L; Kobayashi E; Sakuma I
    Comput Med Imaging Graph; 2015 Mar; 40():147-59. PubMed ID: 25465067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fusion of augmented reality imaging with the endoscopic view for endonasal skull base surgery; a novel application for surgical navigation based on intraoperative cone beam computed tomography and optical tracking.
    Lai M; Skyrman S; Shan C; Babic D; Homan R; Edström E; Persson O; Burström G; Elmi-Terander A; Hendriks BHW; de With PHN
    PLoS One; 2020; 15(1):e0227312. PubMed ID: 31945082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery.
    Wang J; Suenaga H; Hoshi K; Yang L; Kobayashi E; Sakuma I; Liao H
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1295-304. PubMed ID: 24658253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An accurate 3D augmented reality navigation system with enhanced autostereoscopic display for oral and maxillofacial surgery.
    Han B; Li R; Huang T; Ma L; Liang H; Zhang X; Liao H
    Int J Med Robot; 2022 Aug; 18(4):e2404. PubMed ID: 35403319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision-guided surgical navigation system using laser guidance and 3D autostereoscopic image overlay.
    Liao H; Ishihara H; Tran HH; Masamune K; Sakuma I; Dohi T
    Comput Med Imaging Graph; 2010 Jan; 34(1):46-54. PubMed ID: 19674871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspective pinhole model with planar source for augmented reality surgical navigation based on C-arm imaging.
    Ha HG; Jeon S; Lee S; Choi H; Hong J
    Int J Comput Assist Radiol Surg; 2018 Oct; 13(10):1671-1682. PubMed ID: 30014167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A practical marker-less image registration method for augmented reality oral and maxillofacial surgery.
    Wang J; Shen Y; Yang S
    Int J Comput Assist Radiol Surg; 2019 May; 14(5):763-773. PubMed ID: 30825070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay.
    Liao H; Inomata T; Sakuma I; Dohi T
    IEEE Trans Biomed Eng; 2010 Jun; 57(6):1476-86. PubMed ID: 20172791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Projector-Based Augmented Reality Navigation System for Computer-Assisted Surgery.
    Gao Y; Zhao Y; Xie L; Zheng G
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image Overlay Surgery Based on Augmented Reality: A Systematic Review.
    Pérez-Pachón L; Poyade M; Lowe T; Gröning F
    Adv Exp Med Biol; 2020; 1260():175-195. PubMed ID: 33211313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Validation of a Spinal Surgical Navigation System Based on Spatial Augmented Reality.
    Xu B; Yang Z; Jiang S; Zhou Z; Jiang B; Yin S
    Spine (Phila Pa 1976); 2020 Dec; 45(23):E1627-E1633. PubMed ID: 32833931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience.
    Caversaccio M; Langlotz F; Nolte LP; Häusler R
    Acta Otolaryngol; 2007 Apr; 127(4):403-7. PubMed ID: 17453461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.
    Chen L; Tang W; John NW; Wan TR; Zhang JJ
    Comput Methods Programs Biomed; 2018 May; 158():135-146. PubMed ID: 29544779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies.
    Gavaghan K; Oliveira-Santos T; Peterhans M; Reyes M; Kim H; Anderegg S; Weber S
    Int J Comput Assist Radiol Surg; 2012 Jul; 7(4):547-56. PubMed ID: 22015571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [3D augmented reality visualization for navigated osteosynthesis of pelvic fractures].
    Befrui N; Fischer M; Fuerst B; Lee SC; Fotouhi J; Weidert S; Johnson A; Euler E; Osgood G; Navab N; Böcker W
    Unfallchirurg; 2018 Apr; 121(4):264-270. PubMed ID: 29500506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the 3D Augmented Reality-Guided Intraoperative Positioning of Dental Implants in Edentulous Mandibular Models.
    Jiang W; Ma L; Zhang B; Fan Y; Qu X; Zhang X; Liao H
    Int J Oral Maxillofac Implants; 2018; 33(6):1219-1228. PubMed ID: 30427952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study.
    Suenaga H; Hoang Tran H; Liao H; Masamune K; Dohi T; Hoshi K; Mori Y; Takato T
    Int J Oral Sci; 2013 Jun; 5(2):98-102. PubMed ID: 23703710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surgical navigation by autostereoscopic image overlay of integral videography.
    Liao H; Hata N; Nakajima S; Iwahara M; Sakuma I; Dohi T
    IEEE Trans Inf Technol Biomed; 2004 Jun; 8(2):114-21. PubMed ID: 15217256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-accuracy surgical augmented reality system using enhanced integral videography image overlay.
    Zhang X; Chen G; Liao H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4210-3. PubMed ID: 26737223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.