These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30530490)

  • 41. Molecular chaperone function of the Rana catesbeiana small heat shock protein, hsp30.
    Kaldis A; Atkinson BG; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Oct; 139(2):175-82. PubMed ID: 15528166
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network.
    Veinger L; Diamant S; Buchner J; Goloubinoff P
    J Biol Chem; 1998 May; 273(18):11032-7. PubMed ID: 9556585
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.
    Zhang H; Yang J; Wu S; Gong W; Chen C; Perrett S
    J Biol Chem; 2016 Mar; 291(13):6967-81. PubMed ID: 26823468
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein folding intermediates of invasin protein IbeA from Escherichia coli.
    Mendu DR; Dasari VR; Cai M; Kim KS
    FEBS J; 2008 Feb; 275(3):458-69. PubMed ID: 18167139
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gene expression profiling of the pH response in Escherichia coli.
    Tucker DL; Tucker N; Conway T
    J Bacteriol; 2002 Dec; 184(23):6551-8. PubMed ID: 12426343
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chaperone properties of the bacterial periplasmic substrate-binding proteins.
    Richarme G; Caldas TD
    J Biol Chem; 1997 Jun; 272(25):15607-12. PubMed ID: 9188448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Divergent genetic control of protein solubility and conformational quality in Escherichia coli.
    García-Fruitós E; Martínez-Alonso M; Gonzàlez-Montalbán N; Valli M; Mattanovich D; Villaverde A
    J Mol Biol; 2007 Nov; 374(1):195-205. PubMed ID: 17920630
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid.
    Lai Z; Colón W; Kelly JW
    Biochemistry; 1996 May; 35(20):6470-82. PubMed ID: 8639594
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional dissection of Escherichia coli trigger factor: unraveling the function of individual domains.
    Kramer G; Rutkowska A; Wegrzyn RD; Patzelt H; Kurz TA; Merz F; Rauch T; Vorderwülbecke S; Deuerling E; Bukau B
    J Bacteriol; 2004 Jun; 186(12):3777-84. PubMed ID: 15175291
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modulating the Effects of the Bacterial Chaperonin GroEL on Fibrillogenic Polypeptides through Modification of Domain Hinge Architecture.
    Fukui N; Araki K; Hongo K; Mizobata T; Kawata Y
    J Biol Chem; 2016 Nov; 291(48):25217-25226. PubMed ID: 27742838
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of heme on the structure of the denatured state and folding kinetics of cytochrome b562.
    Garcia P; Bruix M; Rico M; Ciofi-Baffoni S; Banci L; Ramachandra Shastry MC; Roder H; de Lumley Woodyear T; Johnson CM; Fersht AR; Barker PD
    J Mol Biol; 2005 Feb; 346(1):331-44. PubMed ID: 15663948
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amyloid-like fibril formation of co-chaperonin GroES: nucleation and extension prefer different degrees of molecular compactness.
    Higurashi T; Yagi H; Mizobata T; Kawata Y
    J Mol Biol; 2005 Sep; 351(5):1057-69. PubMed ID: 16054644
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The monomer-seed interaction mechanism in the formation of the β2-microglobulin amyloid fibril clarified by solution NMR techniques.
    Yanagi K; Sakurai K; Yoshimura Y; Konuma T; Lee YH; Sugase K; Ikegami T; Naiki H; Goto Y
    J Mol Biol; 2012 Sep; 422(3):390-402. PubMed ID: 22683352
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heating during agitation of β
    Noji M; Sasahara K; Yamaguchi K; So M; Sakurai K; Kardos J; Naiki H; Goto Y
    J Biol Chem; 2019 Oct; 294(43):15826-15835. PubMed ID: 31495783
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unique Unfoldase/Aggregase Activity of a Molecular Chaperone Hsp33 in its Holding-Inactive State.
    Jo KS; Kim JH; Ryu KS; Kang JS; Wang CY; Lee YS; Seo MD; Lee YH; Won HS
    J Mol Biol; 2019 Mar; 431(7):1468-1480. PubMed ID: 30822413
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The importance of having thermosensor control in the DnaK chaperone system.
    Siegenthaler RK; Christen P
    J Biol Chem; 2005 Apr; 280(15):14395-401. PubMed ID: 15705578
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteolysis in the Escherichia coli heat shock response: a player at many levels.
    Meyer AS; Baker TA
    Curr Opin Microbiol; 2011 Apr; 14(2):194-9. PubMed ID: 21353626
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state.
    Matuszewska M; Kuczyńska-Wiśnik D; Laskowska E; Liberek K
    J Biol Chem; 2005 Apr; 280(13):12292-8. PubMed ID: 15665332
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Escherichia coli DjlA and CbpA proteins can substitute for DnaJ in DnaK-mediated protein disaggregation.
    Gur E; Biran D; Shechter N; Genevaux P; Georgopoulos C; Ron EZ
    J Bacteriol; 2004 Nov; 186(21):7236-42. PubMed ID: 15489435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.