BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 30530783)

  • 1. Inhibitors of energy metabolism interfere with antibiotic-induced death in mycobacteria.
    Lee BS; Kalia NP; Jin XEF; Hasenoehrl EJ; Berney M; Pethe K
    J Biol Chem; 2019 Feb; 294(6):1936-1943. PubMed ID: 30530783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoniazid Bactericidal Activity Involves Electron Transport Chain Perturbation.
    Zeng S; Soetaert K; Ravon F; Vandeput M; Bald D; Kauffmann JM; Mathys V; Wattiez R; Fontaine V
    Antimicrob Agents Chemother; 2019 Mar; 63(3):. PubMed ID: 30642937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State.
    Patil V; Jain V
    J Bacteriol; 2019 Oct; 201(19):. PubMed ID: 31285242
    [No Abstract]   [Full Text] [Related]  

  • 4. Targeting Energy Metabolism in
    Bald D; Villellas C; Lu P; Koul A
    mBio; 2017 Apr; 8(2):. PubMed ID: 28400527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis.
    Lee BS; Hards K; Engelhart CA; Hasenoehrl EJ; Kalia NP; Mackenzie JS; Sviriaeva E; Chong SMS; Manimekalai MSS; Koh VH; Chan J; Xu J; Alonso S; Miller MJ; Steyn AJC; Grüber G; Schnappinger D; Berney M; Cook GM; Moraski GC; Pethe K
    EMBO Mol Med; 2021 Jan; 13(1):e13207. PubMed ID: 33283973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting bacterial energetics to produce new antimicrobials.
    Hards K; Cook GM
    Drug Resist Updat; 2018 Jan; 36():1-12. PubMed ID: 29499834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting the synthetic lethality between terminal respiratory oxidases to kill
    Kalia NP; Hasenoehrl EJ; Ab Rahman NB; Koh VH; Ang MLT; Sajorda DR; Hards K; Grüber G; Alonso S; Cook GM; Berney M; Pethe K
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7426-7431. PubMed ID: 28652330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis.
    Urban M; Šlachtová V; Brulíková L
    Eur J Med Chem; 2021 Feb; 212():113139. PubMed ID: 33422979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type-II NADH Dehydrogenase (NDH-2): a promising therapeutic target for antitubercular and antibacterial drug discovery.
    Sellamuthu S; Singh M; Kumar A; Singh SK
    Expert Opin Ther Targets; 2017 Jun; 21(6):559-570. PubMed ID: 28472892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An amiloride derivative is active against the F
    Hards K; Cheung CY; Waller N; Adolph C; Keighley L; Tee ZS; Harold LK; Menorca A; Bujaroski RS; Buckley BJ; Tyndall JDA; McNeil MB; Rhee KY; Opel-Reading HK; Krause K; Preiss L; Langer JD; Meier T; Hasenoehrl EJ; Berney M; Kelso MJ; Cook GM
    Commun Biol; 2022 Feb; 5(1):166. PubMed ID: 35210534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An update on ATP synthase inhibitors: A unique target for drug development in M. tuberculosis.
    Kelam LM; Wani MA; Dhaked DK
    Prog Biophys Mol Biol; 2023; 180-181():87-104. PubMed ID: 37105260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional Inhibition of the F
    McNeil MB; Ryburn HWK; Harold LK; Tirados JF; Cook GM
    Antimicrob Agents Chemother; 2020 Jul; 64(8):. PubMed ID: 32423951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halting ionic shuttle to disrupt the synthetic machinery-Structural and molecular insights into the inhibitory roles of Bedaquiline towards Mycobacterium tuberculosis ATP synthase in the treatment of tuberculosis.
    Salifu EY; Agoni C; Olotu FA; Dokurugu YM; Soliman MES
    J Cell Biochem; 2019 Sep; 120(9):16108-16119. PubMed ID: 31125144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antituberculosis Activity of the Antimalaria Cytochrome
    Chong SMS; Manimekalai MSS; Sarathy JP; Williams ZC; Harold LK; Cook GM; Dick T; Pethe K; Bates RW; Grüber G
    ACS Infect Dis; 2020 Apr; 6(4):725-737. PubMed ID: 32092260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of antitubercular compound library identifies novel ATP synthase inhibitors of Mycobacterium tuberculosis.
    Kumar S; Mehra R; Sharma S; Bokolia NP; Raina D; Nargotra A; Singh PP; Khan IA
    Tuberculosis (Edinb); 2018 Jan; 108():56-63. PubMed ID: 29523328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique structural and mechanistic properties of mycobacterial F-ATP synthases: Implications for drug design.
    Kamariah N; Ragunathan P; Shin J; Saw WG; Wong CF; Dick T; Grüber G
    Prog Biophys Mol Biol; 2020 May; 152():64-73. PubMed ID: 31743686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arylvinylpiperazine Amides, a New Class of Potent Inhibitors Targeting QcrB of Mycobacterium tuberculosis.
    Foo CS; Lupien A; Kienle M; Vocat A; Benjak A; Sommer R; Lamprecht DA; Steyn AJC; Pethe K; Piton J; Altmann KH; Cole ST
    mBio; 2018 Oct; 9(5):. PubMed ID: 30301850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Fluorescence ATP Sensor Based on Fluorescence Resonance Energy Transfer Reveals Role of Antibiotic-Induced ATP Perturbation in Mycobacterial Killing.
    Liang L; Lin D; Chen Y; Li J; Liang W; Zhao H; Luo W; Tian GB; Feng S
    mSystems; 2022 Jun; 7(3):e0020922. PubMed ID: 35615956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis.
    Mackenzie JS; Lamprecht DA; Asmal R; Adamson JH; Borah K; Beste DJV; Lee BS; Pethe K; Rousseau S; Krieger I; Sacchettini JC; Glasgow JN; Steyn AJC
    Nat Commun; 2020 Nov; 11(1):6092. PubMed ID: 33257709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in
    Hasenoehrl EJ; Wiggins TJ; Berney M
    Front Cell Infect Microbiol; 2020; 10():611683. PubMed ID: 33505923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.