BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30530956)

  • 21. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.
    Zhang HX; Xiao GY; Wang X; Dong ZG; Ma ZY; Li L; Li YH; Pan X; Nie L
    J Biomed Mater Res A; 2015 Oct; 103(10):3250-8. PubMed ID: 25809455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Preparation of chitosan-encapsulated porous calcium polyphosphate bioceramic].
    Fan C; Liu D; Ren Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Dec; 21(12):1355-8. PubMed ID: 18277683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of K/Sr co-doped calcium polyphosphate bioceramic as scaffolds for bone substitutes.
    Xie H; Wang Q; Ye Q; Wan C; Li L
    J Mater Sci Mater Med; 2012 Apr; 23(4):1033-44. PubMed ID: 22311075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo study of porous strontium-doped calcium polyphosphate scaffolds for bone substitute applications.
    Tian M; Chen F; Song W; Song Y; Chen Y; Wan C; Yu X; Zhang X
    J Mater Sci Mater Med; 2009 Jul; 20(7):1505-12. PubMed ID: 19267259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.
    Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G
    Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L
    J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel composite scaffold of Cu-doped nano calcium-deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration.
    Mou P; Peng H; Zhou L; Li L; Li H; Huang Q
    Int J Nanomedicine; 2019; 14():3331-3343. PubMed ID: 31123401
    [No Abstract]   [Full Text] [Related]  

  • 28. Enhanced bone defect repairing effects in glucocorticoid-induced osteonecrosis of the femoral head using a porous nano-lithium-hydroxyapatite/gelatin microsphere/erythropoietin composite scaffold.
    Li D; Xie X; Yang Z; Wang C; Wei Z; Kang P
    Biomater Sci; 2018 Feb; 6(3):519-537. PubMed ID: 29369309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The construction of a self-assembled coating with chitosan-grafted reduced graphene oxide on porous calcium polyphosphate scaffolds for bone tissue engineering.
    Ding H; Peng X; Yu X; Hu M; Wan C; Lei N; Luo Y; Yu X
    Biomed Mater; 2022 May; 17(4):. PubMed ID: 35545061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel strontium-doped calcium polyphosphate/erythromycin/poly(vinyl alcohol) composite for bone tissue engineering.
    Song W; Ren W; Wan C; Esquivel AO; Shi T; Blasier R; Markel DC
    J Biomed Mater Res A; 2011 Sep; 98(3):359-71. PubMed ID: 21626667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering.
    Denry I; Kuhn LT
    Dent Mater; 2016 Jan; 32(1):43-53. PubMed ID: 26423007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and evaluation of a biomimetic scaffold with porosity gradients in vitro.
    Wang Q; Wang Q; Wan C
    An Acad Bras Cienc; 2012 Mar; 84(1):9-16. PubMed ID: 22441592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel alkali metals/strontium co-substituted calcium polyphosphate scaffolds in bone tissue engineering.
    Song W; Wang Q; Wan C; Shi T; Markel D; Blaiser R; Ren W
    J Biomed Mater Res B Appl Biomater; 2011 Aug; 98(2):255-62. PubMed ID: 21732528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering human bone grafts with new macroporous calcium phosphate cement scaffolds.
    Sladkova M; Palmer M; Öhman C; Cheng J; Al-Ansari S; Saad M; Engqvist H; de Peppo GM
    J Tissue Eng Regen Med; 2018 Mar; 12(3):715-726. PubMed ID: 28635177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization.
    Shafiei S; Omidi M; Nasehi F; Golzar H; Mohammadrezaei D; Rezai Rad M; Khojasteh A
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():564-575. PubMed ID: 30948093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
    Lee GS; Park JH; Shin US; Kim HW
    Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering.
    Tong S; Xu DP; Liu ZM; Du Y; Wang XK
    Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical and biological characterization of alkaline substituted orthophosphate bone substitutes containing meta- and diphosphates.
    Klein M; Laschke MW; Holstein JH; Histing T; Pohlemann T; Menger MD; Garcia P
    Biomed Mater; 2017 Sep; 12(5):055007. PubMed ID: 28691695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    J Mater Sci Mater Med; 2015 Jan; 26(1):5366. PubMed ID: 25578714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding.
    Pina S; Canadas RF; Jiménez G; Perán M; Marchal JA; Reis RL; Oliveira JM
    Cells Tissues Organs; 2017; 204(3-4):150-163. PubMed ID: 28803246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.