These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 30531036)
1. Seasonal behavior and forecasting trends of tuberculosis incidence in Holy Kerbala, Iraq. Mohammed SH; Ahmed MM; Al-Mousawi AM; Azeez A Int J Mycobacteriol; 2018; 7(4):361-367. PubMed ID: 30531036 [TBL] [Abstract][Full Text] [Related]
2. Seasonality and Trend Forecasting of Tuberculosis Prevalence Data in Eastern Cape, South Africa, Using a Hybrid Model. Azeez A; Obaromi D; Odeyemi A; Ndege J; Muntabayi R Int J Environ Res Public Health; 2016 Jul; 13(8):. PubMed ID: 27472353 [TBL] [Abstract][Full Text] [Related]
3. Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan. Kuan MM PeerJ; 2022; 10():e13117. PubMed ID: 36164599 [TBL] [Abstract][Full Text] [Related]
4. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model. Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283 [TBL] [Abstract][Full Text] [Related]
5. Trends, seasonality and forecasts of pulmonary tuberculosis in Portugal. Bras AL; Gomes D; Filipe PA; de Sousa B; Nunes C Int J Tuberc Lung Dis; 2014 Oct; 18(10):1202-10. PubMed ID: 25216834 [TBL] [Abstract][Full Text] [Related]
6. Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model. Zhang X; Pang Y; Cui M; Stallones L; Xiang H Ann Epidemiol; 2015 Feb; 25(2):101-6. PubMed ID: 25467006 [TBL] [Abstract][Full Text] [Related]
7. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China. Liao Z; Zhang X; Zhang Y; Peng D Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907 [TBL] [Abstract][Full Text] [Related]
8. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model. Mao Q; Zhang K; Yan W; Cheng C J Infect Public Health; 2018; 11(5):707-712. PubMed ID: 29730253 [TBL] [Abstract][Full Text] [Related]
9. Forecasting COVID-19 Case Trends Using SARIMA Models during the Third Wave of COVID-19 in Malaysia. Tan CV; Singh S; Lai CH; Zamri ASSM; Dass SC; Aris TB; Ibrahim HM; Gill BS Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162523 [TBL] [Abstract][Full Text] [Related]
10. Research on hand, foot and mouth disease incidence forecasting using hybrid model in mainland China. Zhao D; Zhang H; Zhang R; He S BMC Public Health; 2023 Mar; 23(1):619. PubMed ID: 37003988 [TBL] [Abstract][Full Text] [Related]
11. Forecast of the trend in incidence of acute hemorrhagic conjunctivitis in China from 2011-2019 using the Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ETS) models. Liu H; Li C; Shao Y; Zhang X; Zhai Z; Wang X; Qi X; Wang J; Hao Y; Wu Q; Jiao M J Infect Public Health; 2020 Feb; 13(2):287-294. PubMed ID: 31953020 [TBL] [Abstract][Full Text] [Related]
12. A hybrid seasonal prediction model for tuberculosis incidence in China. Cao S; Wang F; Tam W; Tse LA; Kim JH; Liu J; Lu Z BMC Med Inform Decis Mak; 2013 May; 13():56. PubMed ID: 23638635 [TBL] [Abstract][Full Text] [Related]
13. Forecasting the Tuberculosis Incidence Using a Novel Ensemble Empirical Mode Decomposition-Based Data-Driven Hybrid Model in Tibet, China. Li J; Li Y; Ye M; Yao S; Yu C; Wang L; Wu W; Wang Y Infect Drug Resist; 2021; 14():1941-1955. PubMed ID: 34079304 [TBL] [Abstract][Full Text] [Related]
14. Application of a combined model with seasonal autoregressive integrated moving average and support vector regression in forecasting hand-foot-mouth disease incidence in Wuhan, China. Zou JJ; Jiang GF; Xie XX; Huang J; Yang XB Medicine (Baltimore); 2019 Feb; 98(6):e14195. PubMed ID: 30732135 [TBL] [Abstract][Full Text] [Related]
15. Secular Seasonality and Trend Forecasting of Tuberculosis Incidence Rate in China Using the Advanced Error-Trend-Seasonal Framework. Wang Y; Xu C; Ren J; Wu W; Zhao X; Chao L; Liang W; Yao S Infect Drug Resist; 2020; 13():733-747. PubMed ID: 32184635 [TBL] [Abstract][Full Text] [Related]
16. A Hybrid Approach Based on Seasonal Autoregressive Integrated Moving Average and Neural Network Autoregressive Models to Predict Scorpion Sting Incidence in El Oued Province, Algeria, From 2005 to 2020. Zenia S; L'Hadj M; Selmane S J Res Health Sci; 2023 Sep; 23(3):e00586. PubMed ID: 38315901 [TBL] [Abstract][Full Text] [Related]
17. SARFIMA model prediction for infectious diseases: application to hemorrhagic fever with renal syndrome and comparing with SARIMA. Qi C; Zhang D; Zhu Y; Liu L; Li C; Wang Z; Li X BMC Med Res Methodol; 2020 Sep; 20(1):243. PubMed ID: 32993517 [TBL] [Abstract][Full Text] [Related]
18. Forecasting the monthly incidence of scarlet fever in Chongqing, China using the SARIMA model. Wu WW; Li Q; Tian DC; Zhao H; Xia Y; Xiong Y; Su K; Tang WG; Chen X; Wang J; Qi L Epidemiol Infect; 2022 Apr; 150():e90. PubMed ID: 35543101 [TBL] [Abstract][Full Text] [Related]
19. Forecasting seasonal influenza activity in Canada-Comparing seasonal Auto-Regressive integrated moving average and artificial neural network approaches for public health preparedness. Orang A; Berke O; Poljak Z; Greer AL; Rees EE; Ng V Zoonoses Public Health; 2024 May; 71(3):304-313. PubMed ID: 38331569 [TBL] [Abstract][Full Text] [Related]
20. Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Average (SARIMA). ArunKumar KE; Kalaga DV; Sai Kumar CM; Chilkoor G; Kawaji M; Brenza TM Appl Soft Comput; 2021 May; 103():107161. PubMed ID: 33584158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]