These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 30531104)

  • 1. Characterization of Myoglobin Adsorption into Mesoporous Silica Pores by Differential Scanning Calorimetry.
    Yamaguchi A; Taki K; Kijima J; Edanami Y; Shibuya Y
    Anal Sci; 2018; 34(12):1393-1399. PubMed ID: 30531104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential Scanning Calorimetry Study on the Adsorption of Myoglobin at Mesoporous Silicas: Effects of Solution pH and Pore Size.
    Yamaguchi A; Kashimura C; Aizawa M; Shibuya Y
    ACS Omega; 2020 Sep; 5(36):22993-23001. PubMed ID: 32954149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel strategy to design sustained-release poorly water-soluble drug mesoporous silica microparticles based on supercritical fluid technique.
    Li-Hong W; Xin C; Hui X; Li-Li Z; Jing H; Mei-Juan Z; Jie L; Yi L; Jin-Wen L; Wei Z; Gang C
    Int J Pharm; 2013 Sep; 454(1):135-42. PubMed ID: 23871738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melting and freezing of water in cylindrical silica nanopores.
    Jähnert S; Vaca Chávez F; Schaumann GE; Schreiber A; Schönhoff M; Findenegg GH
    Phys Chem Chem Phys; 2008 Oct; 10(39):6039-51. PubMed ID: 18825292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release profile of insulin entrapped on mesoporous materials by freeze-thaw method.
    Tozuka Y; Sugiyama E; Takeuchi H
    Int J Pharm; 2010 Feb; 386(1-2):172-7. PubMed ID: 19931606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Condensation at Nanopore Entrances as Studied by Differential Scanning Calorimetry and Small-Angle Neutron Scattering.
    Aizawa M; Iwase H; Kamijo T; Yamaguchi A
    J Phys Chem Lett; 2022 Sep; 13(37):8684-8691. PubMed ID: 36094403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: influence of pore size on release rate.
    Zhu W; Wan L; Zhang C; Gao Y; Zheng X; Jiang T; Wang S
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():78-85. PubMed ID: 24268236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation of PEG-modified myoglobin in hydrophobic mesoporous silica as studied by optical waveguide spectroscopy.
    Arafune H; Yamaguchi A; Hotta K; Itoh T; Teramae N
    Anal Sci; 2013; 29(2):187-92. PubMed ID: 23400283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of DNA into mesoporous silica.
    Solberg SM; Landry CC
    J Phys Chem B; 2006 Aug; 110(31):15261-8. PubMed ID: 16884243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption onto Mesoporous Silica Using Supercritical Fluid Technology Improves Dissolution Rate of Carbamazepine-a Poorly Soluble Compound.
    Gandhi AV; Thipsay P; Kirthivasan B; Squillante E
    AAPS PharmSciTech; 2017 Nov; 18(8):3140-3150. PubMed ID: 28534299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1.9 μm superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules.
    Min Y; Jiang B; Wu C; Xia S; Zhang X; Liang Z; Zhang L; Zhang Y
    J Chromatogr A; 2014 Aug; 1356():148-56. PubMed ID: 24999068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast and reliable DSC-based method to determine the monomolecular loading capacity of drugs with good glass-forming ability in mesoporous silica.
    Hempel NJ; Brede K; Olesen NE; Genina N; Knopp MM; Löbmann K
    Int J Pharm; 2018 Jun; 544(1):153-157. PubMed ID: 29679750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast enzyme immobilization over large-pore nanoscale mesoporous silica particles.
    Sun J; Zhang H; Tian R; Ma D; Bao X; Su DS; Zou H
    Chem Commun (Camb); 2006 Mar; (12):1322-4. PubMed ID: 16538261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the adsorption mechanism of DNA with mesoporous silica nanoparticles in aqueous solution.
    Li X; Zhang J; Gu H
    Langmuir; 2012 Feb; 28(5):2827-34. PubMed ID: 22182067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of novel core-shell structured dual-mesoporous silica nanospheres and their application for enhancing the dissolution rate of poorly water-soluble drugs.
    Wu C; Sun X; Zhao Z; Zhao Y; Hao Y; Liu Y; Gao Y
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():262-7. PubMed ID: 25280705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preparation and release behaviour of mesoporous silica/ethylcellulose sustained-release mini-matrix].
    Wu QL; Quan GL; Hong Y; Wu LN; Zeng YM; Li G; Pan X; Wu CB
    Yao Xue Xue Bao; 2015 Apr; 50(4):492-9. PubMed ID: 26223134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ketoprofen mesoporous silica nanoparticles SBA-15 hard gelatin capsules: preparation and in vitro/in vivo characterization.
    Abd-Elrahman AA; El Nabarawi MA; Hassan DH; Taha AA
    Drug Deliv; 2016 Nov; 23(9):3387-3398. PubMed ID: 27167529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of duplex DNA on mesoporous silicas: possibility of inclusion of DNA into their mesopores.
    Fujiwara M; Yamamoto F; Okamoto K; Shiokawa K; Nomura R
    Anal Chem; 2005 Dec; 77(24):8138-45. PubMed ID: 16351166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving bioavailability of silybin by inclusion into SBA-15 mesoporous silica materials.
    Fu T; Lu J; Guo L; Zhang L; Cai X; Zhu H
    J Nanosci Nanotechnol; 2012 May; 12(5):3997-4006. PubMed ID: 22852339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of solid SEDDS, VII: Effect of pore size of silica on drug release from adsorbed self-emulsifying lipid-based formulations.
    Gumaste SG; Serajuddin ATM
    Eur J Pharm Sci; 2017 Dec; 110():134-147. PubMed ID: 28506870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.