BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 30532068)

  • 1. A chromatin integration labelling method enables epigenomic profiling with lower input.
    Harada A; Maehara K; Handa T; Arimura Y; Nogami J; Hayashi-Takanaka Y; Shirahige K; Kurumizaka H; Kimura H; Ohkawa Y
    Nat Cell Biol; 2019 Feb; 21(2):287-296. PubMed ID: 30532068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin integration labeling for mapping DNA-binding proteins and modifications with low input.
    Handa T; Harada A; Maehara K; Sato S; Nakao M; Goto N; Kurumizaka H; Ohkawa Y; Kimura H
    Nat Protoc; 2020 Oct; 15(10):3334-3360. PubMed ID: 32807906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide epigenomic profiling for biomarker discovery.
    Dirks RA; Stunnenberg HG; Marks H
    Clin Epigenetics; 2016; 8():122. PubMed ID: 27895806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CoBATCH for High-Throughput Single-Cell Epigenomic Profiling.
    Wang Q; Xiong H; Ai S; Yu X; Liu Y; Zhang J; He A
    Mol Cell; 2019 Oct; 76(1):206-216.e7. PubMed ID: 31471188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq).
    Carter B; Ku WL; Kang JY; Hu G; Perrie J; Tang Q; Zhao K
    Nat Commun; 2019 Aug; 10(1):3747. PubMed ID: 31431618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk.
    Brinkman AB; Gu H; Bartels SJ; Zhang Y; Matarese F; Simmer F; Marks H; Bock C; Gnirke A; Meissner A; Stunnenberg HG
    Genome Res; 2012 Jun; 22(6):1128-38. PubMed ID: 22466170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenomic profiling of archived FFPE tissues by enhanced PAT-ChIP (EPAT-ChIP) technology.
    Amatori S; Persico G; Paolicelli C; Hillje R; Sahnane N; Corini F; Furlan D; Luzi L; Minucci S; Giorgio M; Pelicci PG; Fanelli M
    Clin Epigenetics; 2018 Nov; 10(1):143. PubMed ID: 30446010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. cChIP-seq: a robust small-scale method for investigation of histone modifications.
    Valensisi C; Liao JL; Andrus C; Battle SL; Hawkins RD
    BMC Genomics; 2015 Dec; 16():1083. PubMed ID: 26692029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells.
    Shin JH; Xu L; Li RW; Gao Y; Bickhart D; Liu GE; Baldwin R; Li CJ
    Anim Genet; 2014 Aug; 45 Suppl 1():40-50. PubMed ID: 24990294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide epigenetic analysis of human pluripotent stem cells by ChIP and ChIP-Seq.
    Hitchler MJ; Rice JC
    Methods Mol Biol; 2011; 767():253-67. PubMed ID: 21822881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and application of an integrated allele-specific pipeline for methylomic and epigenomic analysis (MEA).
    Richard Albert J; Koike T; Younesy H; Thompson R; Bogutz AB; Karimi MM; Lorincz MC
    BMC Genomics; 2018 Jun; 19(1):463. PubMed ID: 29907088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global histone modification profiling reveals the epigenomic dynamics during malignant transformation in a four-stage breast cancer model.
    Zhao QY; Lei PJ; Zhang X; Zheng JY; Wang HY; Zhao J; Li YM; Ye M; Li L; Wei G; Wu M
    Clin Epigenetics; 2016; 8():34. PubMed ID: 27034728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem.
    Hussey SG; Mizrachi E; Groover A; Berger DK; Myburg AA
    BMC Plant Biol; 2015 May; 15():117. PubMed ID: 25957781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-Wide Profiling of Histone Modifications with ChIP-Seq.
    Ricci WA; Levin L; Zhang X
    Methods Mol Biol; 2020; 2072():101-117. PubMed ID: 31541441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic analysis: ChIP-chip and ChIP-seq.
    Pellegrini M; Ferrari R
    Methods Mol Biol; 2012; 802():377-87. PubMed ID: 22130894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-throughput ChIP-Seq for large-scale chromatin studies.
    Chabbert CD; Adjalley SH; Klaus B; Fritsch ES; Gupta I; Pelechano V; Steinmetz LM
    Mol Syst Biol; 2015 Jan; 11(1):777. PubMed ID: 25583149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-referenced genome assembly from epigenomic short-read data.
    Kaspi A; Ziemann M; Keating ST; Khurana I; Connor T; Spolding B; Cooper A; Lazarus R; Walder K; Zimmet P; El-Osta A
    Epigenetics; 2014 Oct; 9(10):1329-38. PubMed ID: 25437048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MOWChIP-seq for low-input and multiplexed profiling of genome-wide histone modifications.
    Zhu B; Hsieh YP; Murphy TW; Zhang Q; Naler LB; Lu C
    Nat Protoc; 2019 Dec; 14(12):3366-3394. PubMed ID: 31666743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying dispersed epigenomic domains from ChIP-Seq data.
    Song Q; Smith AD
    Bioinformatics; 2011 Mar; 27(6):870-1. PubMed ID: 21325299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practical Guidelines for High-Resolution Epigenomic Profiling of Nucleosomal Histones in Postmortem Human Brain Tissue.
    Kundakovic M; Jiang Y; Kavanagh DH; Dincer A; Brown L; Pothula V; Zharovsky E; Park R; Jacobov R; Magro I; Kassim B; Wiseman J; Dang K; Sieberts SK; Roussos P; Fromer M; Harris B; Lipska BK; Peters MA; Sklar P; Akbarian S
    Biol Psychiatry; 2017 Jan; 81(2):162-170. PubMed ID: 27113501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.