These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30532110)

  • 41. Pathway from Acute Kidney Injury to Chronic Kidney Disease: Molecules Involved in Renal Fibrosis.
    Niculae A; Gherghina ME; Peride I; Tiglis M; Nechita AM; Checherita IA
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762322
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular Mechanisms of the Acute Kidney Injury to Chronic Kidney Disease Transition: An Updated View.
    Guzzi F; Cirillo L; Roperto RM; Romagnani P; Lazzeri E
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31590461
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Autophagy in acute kidney injury and repair.
    He L; Livingston MJ; Dong Z
    Nephron Clin Pract; 2014; 127(1-4):56-60. PubMed ID: 25343822
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stop adding insult to injury-identifying and managing risk factors for the progression of acute kidney injury in children.
    Hayes W
    Pediatr Nephrol; 2017 Dec; 32(12):2235-2243. PubMed ID: 28197888
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Progression after AKI: Understanding Maladaptive Repair Processes to Predict and Identify Therapeutic Treatments.
    Basile DP; Bonventre JV; Mehta R; Nangaku M; Unwin R; Rosner MH; Kellum JA; Ronco C;
    J Am Soc Nephrol; 2016 Mar; 27(3):687-97. PubMed ID: 26519085
    [TBL] [Abstract][Full Text] [Related]  

  • 46. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms.
    He L; Wei Q; Liu J; Yi M; Liu Y; Liu H; Sun L; Peng Y; Liu F; Venkatachalam MA; Dong Z
    Kidney Int; 2017 Nov; 92(5):1071-1083. PubMed ID: 28890325
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kidney injury molecule-1 expression in IgA nephropathy and its correlation with hypoxia and tubulointerstitial inflammation.
    Lin Q; Chen Y; Lv J; Zhang H; Tang J; Gunaratnam L; Li X; Yang L
    Am J Physiol Renal Physiol; 2014 Apr; 306(8):F885-95. PubMed ID: 24523388
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome.
    Chawla LS; Kimmel PL
    Kidney Int; 2012 Sep; 82(5):516-24. PubMed ID: 22673882
    [TBL] [Abstract][Full Text] [Related]  

  • 49. From AKI to CKD: Maladaptive Repair and the Underlying Mechanisms.
    Wang Z; Zhang C
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142787
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acute Kidney Injury: Tubular Markers and Risk for Chronic Kidney Disease and End-Stage Kidney Failure.
    Tan HL; Yap JQ; Qian Q
    Blood Purif; 2016; 41(1-3):144-50. PubMed ID: 26764483
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition of Reticulon-1A-Mediated Endoplasmic Reticulum Stress in Early AKI Attenuates Renal Fibrosis Development.
    Fan Y; Xiao W; Lee K; Salem F; Wen J; He L; Zhang J; Fei Y; Cheng D; Bao H; Liu Y; Lin F; Jiang G; Guo Z; Wang N; He JC
    J Am Soc Nephrol; 2017 Jul; 28(7):2007-2021. PubMed ID: 28137829
    [TBL] [Abstract][Full Text] [Related]  

  • 52. AKI: an increasingly recognized risk factor for CKD development and progression.
    Kurzhagen JT; Dellepiane S; Cantaluppi V; Rabb H
    J Nephrol; 2020 Dec; 33(6):1171-1187. PubMed ID: 32651850
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The AKI-to-CKD Transition: The Role of Uremic Toxins.
    André C; Bodeau S; Kamel S; Bennis Y; Caillard P
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003343
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploring the origin and limitations of kidney regeneration.
    Endo T; Nakamura J; Sato Y; Asada M; Yamada R; Takase M; Takaori K; Oguchi A; Iguchi T; Higashi AY; Ohbayashi T; Nakamura T; Muso E; Kimura T; Yanagita M
    J Pathol; 2015 Jun; 236(2):251-63. PubMed ID: 25664690
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biology of renal recovery: molecules, mechanisms, and pathways.
    Vincent IS; Okusa MD
    Nephron Clin Pract; 2014; 127(1-4):10-4. PubMed ID: 25343813
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Renal Collecting Duct Rises to the Defence.
    Xu Q
    Nephron; 2019; 143(2):148-152. PubMed ID: 31408869
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pax protein depletion in proximal tubules triggers conserved mechanisms of resistance to acute ischemic kidney injury preventing transition to chronic kidney disease.
    Beamish JA; Telang AC; McElliott MC; Al-Suraimi A; Chowdhury M; Ference-Salo JT; Otto EA; Menon R; Soofi A; Weinberg JM; Patel SR; Dressler GR
    Kidney Int; 2024 Feb; 105(2):312-327. PubMed ID: 37977366
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unique proximal tubular cell injury and the development of acute kidney injury in adult patients with minimal change nephrotic syndrome.
    Fujigaki Y; Tamura Y; Nagura M; Arai S; Ota T; Shibata S; Kondo F; Yamaguchi Y; Uchida S
    BMC Nephrol; 2017 Nov; 18(1):339. PubMed ID: 29179690
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transition of acute kidney injury to chronic kidney disease: role of metabolic reprogramming.
    Zhu Z; Hu J; Chen Z; Feng J; Yang X; Liang W; Ding G
    Metabolism; 2022 Jun; 131():155194. PubMed ID: 35346693
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice.
    Le Clef N; Verhulst A; D'Haese PC; Vervaet BA
    PLoS One; 2016; 11(3):e0152153. PubMed ID: 27007127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.