BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 30532261)

  • 1. Predicting protein targets for drug-like compounds using transcriptomics.
    Pabon NA; Xia Y; Estabrooks SK; Ye Z; Herbrand AK; Süß E; Biondi RM; Assimon VA; Gestwicki JE; Brodsky JL; Camacho CJ; Bar-Joseph Z
    PLoS Comput Biol; 2018 Dec; 14(12):e1006651. PubMed ID: 30532261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting kinase inhibitors using bioactivity matrix derived informer sets.
    Zhang H; Ericksen SS; Lee CP; Ananiev GE; Wlodarchak N; Yu P; Mitchell JC; Gitter A; Wright SJ; Hoffmann FM; Wildman SA; Newton MA
    PLoS Comput Biol; 2019 Aug; 15(8):e1006813. PubMed ID: 31381559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational approach to finding novel targets for existing drugs.
    Li YY; An J; Jones SJ
    PLoS Comput Biol; 2011 Sep; 7(9):e1002139. PubMed ID: 21909252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of drug candidates and repurposing opportunities through compound-target interaction networks.
    Cichonska A; Rousu J; Aittokallio T
    Expert Opin Drug Discov; 2015 Dec; 10(12):1333-45. PubMed ID: 26429153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein domain-based prediction of drug/compound-target interactions and experimental validation on LIM kinases.
    Doğan T; Akhan Güzelcan E; Baumann M; Koyas A; Atas H; Baxendale IR; Martin M; Cetin-Atalay R
    PLoS Comput Biol; 2021 Nov; 17(11):e1009171. PubMed ID: 34843456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying Drug-Target Interactions with Decision Templates.
    Yan XY; Zhang SW
    Curr Protein Pept Sci; 2018; 19(5):498-506. PubMed ID: 27829344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Use of Large-Scale Chemically-Induced Transcriptome Data Acquired from LINCS to Study Small Molecules.
    Iwata M; Yamanishi Y
    Methods Mol Biol; 2019; 1888():189-203. PubMed ID: 30519948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-Based Kinase Profiling To Understand the Polypharmacological Behavior of Therapeutic Molecules.
    Dutta D; Das R; Mandal C; Mandal C
    J Chem Inf Model; 2018 Jan; 58(1):68-89. PubMed ID: 29243930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors.
    Cichonska A; Ravikumar B; Parri E; Timonen S; Pahikkala T; Airola A; Wennerberg K; Rousu J; Aittokallio T
    PLoS Comput Biol; 2017 Aug; 13(8):e1005678. PubMed ID: 28787438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D pharmacophore-based virtual screening, docking and density functional theory approach towards the discovery of novel human epidermal growth factor receptor-2 (HER2) inhibitors.
    Gogoi D; Baruah VJ; Chaliha AK; Kakoti BB; Sarma D; Buragohain AK
    J Theor Biol; 2016 Dec; 411():68-80. PubMed ID: 27693363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TargetHunter: an in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database.
    Wang L; Ma C; Wipf P; Liu H; Su W; Xie XQ
    AAPS J; 2013 Apr; 15(2):395-406. PubMed ID: 23292636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting inhibitory and activatory drug targets by chemically and genetically perturbed transcriptome signatures.
    Sawada R; Iwata M; Tabei Y; Yamato H; Yamanishi Y
    Sci Rep; 2018 Jan; 8(1):156. PubMed ID: 29317676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ProSelection: A Novel Algorithm to Select Proper Protein Structure Subsets for in Silico Target Identification and Drug Discovery Research.
    Wang N; Wang L; Xie XQ
    J Chem Inf Model; 2017 Nov; 57(11):2686-2698. PubMed ID: 29016123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome profiling reveals target in primary myelofibrosis together with structural biology study on novel natural inhibitors regarding JAK2.
    Li W; Yuan B; Zhao Y; Lu T; Zhang S; Ding Z; Wang D; Zhong S; Gao G; Yan M
    Aging (Albany NY); 2021 Mar; 13(6):8248-8275. PubMed ID: 33686952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Approaches Towards Kinases as Attractive Targets for Anticancer Drug Discovery and Development.
    Hameed R; Khan A; Khan S; Perveen S
    Anticancer Agents Med Chem; 2019; 19(5):592-598. PubMed ID: 30306880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracing Potential Covalent Inhibitors of an E3 Ubiquitin Ligase through Target-Focused Modelling.
    Bjij I; Ramharack P; Khan S; Cherqaoui D; Soliman MES
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31466292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder.
    Fu Y; Guo Y; Wang Y; Luo J; Pu X; Li M; Zhang Z
    Comput Biol Chem; 2015 Jun; 56():41-8. PubMed ID: 25854804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.