These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30532342)

  • 1. Empirical engineering models for airborne respirable dust capture from water sprays and wet scrubbers.
    Organiscak JA; Klima SS; Pollock DE
    Min Eng; 2018 Oct; 70(10):50-57. PubMed ID: 30532342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of water spray airborne coal dust capture with three wetting agents.
    Organiscak JA
    Trans Soc Min Metall Explor Inc; 2013; 334(1):427-434. PubMed ID: 26251565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Open-air sprays for capturing and controlling airborne float coal dust on longwall faces.
    Beck TW; Seaman CE; Shahan MR; Mischler SE
    Min Eng; 2018 Jan; 70(1):42-48. PubMed ID: 29348700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Spray Surfactant and Particle Charge on Respirable Coal Dust Capture.
    Tessum MW; Raynor PC
    Saf Health Work; 2017 Sep; 8(3):296-305. PubMed ID: 28951807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of a newly developed mobile dry scrubber (DS) for coal mine dust control applications.
    Organiscak J; Noll J; Yantek D; Kendall B
    Trans Soc Min Metall Explor Inc; 2016 Mar; 340():38-47. PubMed ID: 28596699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the performance of a turbulent wet scrubber for scrubbing particulate matter.
    Lee BK; Mohan BR; Byeon SH; Lim KS; Hong EP
    J Air Waste Manag Assoc; 2013 May; 63(5):499-506. PubMed ID: 23786141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic removal of dust using the wet flue gas desulfurization systems.
    Wu Q; Gu M; Du Y; Zeng H
    R Soc Open Sci; 2019 Jul; 6(7):181696. PubMed ID: 31417692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the CAS-POL and IOM samplers for determining the knockdown efficiencies of water sprays on float coal dust.
    Seaman CE; Shahan MR; Beck TW; Mischler SE
    J Occup Environ Hyg; 2018 Mar; 15(3):214-225. PubMed ID: 29200377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of coal mine dust size distributions and calibration standards for crystalline silica analysis.
    Page SJ
    AIHA J (Fairfax, Va); 2003; 64(1):30-9. PubMed ID: 12570393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of a wet scrubber with electrolyzed water spray-Part II: Airborne culturable bacteria removal.
    Li Z; Li B; Zheng W; Tu J; Zheng H; Wang Y
    J Air Waste Manag Assoc; 2019 May; 69(5):603-610. PubMed ID: 30633629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study on effects of drilling parameters on respirable dust production during roof bolting operations.
    Jiang H; Luo Y; McQuerrey J
    J Occup Environ Hyg; 2018 Feb; 15(2):143-151. PubMed ID: 29157141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of electrode materials and dimensions of an electrostatic spray scrubber on water droplet charging for dust removal.
    Li X; Knight RM; S Hocter J; Zhang B; Zhao L; Zhu H
    J Air Waste Manag Assoc; 2022 Dec; 72(12):1442-1453. PubMed ID: 36070473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport.
    Shahan MR; Seaman CE; Beck TW; Colinet JF; Mischler SE
    Min Eng; 2017 Sep; 69(9):61-66. PubMed ID: 28936001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples.
    Miller AL; Murphy NC; Bayman SJ; Briggs ZP; Kilpatrick AD; Quinn CA; Wadas MR; Cauda EG; Griffiths PR
    J Occup Environ Hyg; 2015; 12(7):421-30. PubMed ID: 25636081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using water sprays to improve performance of a flooded-bed dust scrubber.
    Goodman GV
    Appl Occup Environ Hyg; 2000 Jul; 15(7):550-60. PubMed ID: 10893791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the approach to respirable quartz exposure control in U.S. coal mines.
    Joy GJ
    J Occup Environ Hyg; 2012; 9(2):65-8. PubMed ID: 22181563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors influencing the airborne capture of respirable charged particles by surfactants in water sprays.
    Tessum MW; Raynor PC; Keating-Klika L
    J Occup Environ Hyg; 2014; 11(9):571-82. PubMed ID: 24479508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turbulent Aggregation and Deposition Mechanism of Respirable Dust Pollutants under Wet Dedusting using a Two-Fluid Model with the Population Balance Method.
    Wang P; Shen S; Zhou L; Liu D
    Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31514472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of a wet scrubber with electrolyzed water spray-Part I: Ammonia removal.
    Li Z; Li B; Zheng W; Tu J; Zheng H; Wang Y
    J Air Waste Manag Assoc; 2019 May; 69(5):592-602. PubMed ID: 30633708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Dose-response relationship between different respirable coal dust exposures and pneumoconiosis risk].
    Wang XT; Zhang G
    Zhonghua Liu Xing Bing Xue Za Zhi; 2020 Jul; 41(7):1068-1071. PubMed ID: 32741172
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.