BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30532963)

  • 21. Concentration of precious metals during their recovery from electronic waste.
    Cayumil R; Khanna R; Rajarao R; Mukherjee PS; Sahajwalla V
    Waste Manag; 2016 Nov; 57():121-130. PubMed ID: 26712661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Life cycle assessment of hybrid vehicles recycling: Comparison of three business lines of dismantling.
    Belboom S; Lewis G; Bareel PF; Léonard A
    Waste Manag; 2016 Apr; 50():184-93. PubMed ID: 26898478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies for the enhancement of automobile shredder residues (ASRs) recycling: results and cost assessment.
    Ruffino B; Fiore S; Zanetti MC
    Waste Manag; 2014 Jan; 34(1):148-55. PubMed ID: 24140377
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supply chain optimisation for recycling and remanufacturing sustainable management in end-of-life vehicles: A mini-review and classification.
    Yuik CJ; Mat Saman MZ; Ngadiman NHA; Hamzah HS
    Waste Manag Res; 2023 Mar; 41(3):554-565. PubMed ID: 36134680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. End-of-Life Vehicles management: Italian material and energy recovery efficiency.
    Santini A; Morselli L; Passarini F; Vassura I; Di Carlo S; Bonino F
    Waste Manag; 2011 Mar; 31(3):489-94. PubMed ID: 20943364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental impacts and benefits of state-of-the-art technologies for E-waste management.
    Ikhlayel M
    Waste Manag; 2017 Oct; 68():458-474. PubMed ID: 28662843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. End-of-Life in the railway sector: Analysis of recyclability and recoverability for different vehicle case studies.
    Delogu M; Del Pero F; Berzi L; Pierini M; Bonaffini D
    Waste Manag; 2017 Feb; 60():439-450. PubMed ID: 27726996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vehicle routing problem for reverse logistics of End-of-Life Vehicles (ELVs).
    Chaabane A; Montecinos J; Ouhimmou M; Khabou A
    Waste Manag; 2021 Feb; 120():209-220. PubMed ID: 33310597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Auto shredder residue recycling: Mechanical separation and pyrolysis.
    Santini A; Passarini F; Vassura I; Serrano D; Dufour J; Morselli L
    Waste Manag; 2012 May; 32(5):852-8. PubMed ID: 22119051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Forecasting quantities of critical raw materials in obsolete feature and smart phones in Greece: A path to circular economy.
    Kastanaki E; Giannis A
    J Environ Manage; 2022 Apr; 307():114566. PubMed ID: 35091243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pollution characteristics and release mechanism of microplastics in a typical end-of-life vehicle (ELV) recycling base, East China.
    Wang R; Wang H; Zhan L; Xu Z
    Sci Total Environ; 2024 Mar; 916():170306. PubMed ID: 38272096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. End-of-life vehicle recycling and international cooperation between Japan, China and Korea: Present and future scenario analysis.
    Che J; Yu JS; Kevin RS
    J Environ Sci (China); 2011 Jun; 23 Suppl():S162-6. PubMed ID: 25084584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On-field investigation and process modelling of end-of-life vehicles treatment in the context of Italian craft-type authorized treatment facilities.
    Berzi L; Delogu M; Giorgetti A; Pierini M
    Waste Manag; 2013 Apr; 33(4):892-906. PubMed ID: 23352084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automotive shredder residue (ASR): reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals' valorisation.
    Vermeulen I; Van Caneghem J; Block C; Baeyens J; Vandecasteele C
    J Hazard Mater; 2011 Jun; 190(1-3):8-27. PubMed ID: 21440364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electric vehicle recycling 2020: Key component power electronics.
    Bulach W; Schüler D; Sellin G; Elwert T; Schmid D; Goldmann D; Buchert M; Kammer U
    Waste Manag Res; 2018 Apr; 36(4):311-320. PubMed ID: 29502494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Concentration of precious metals from waste printed circuit boards using supergravity separation.
    Meng L; Guo L; Zhong Y; Wang Z; Chen K; Guo Z
    Waste Manag; 2018 Dec; 82():147-155. PubMed ID: 30509576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal Recycling of Steel Scrap and Alloying Elements: Input-Output based Linear Programming Method with Its Application to End-of-Life Vehicles in Japan.
    Ohno H; Matsubae K; Nakajima K; Kondo Y; Nakamura S; Fukushima Y; Nagasaka T
    Environ Sci Technol; 2017 Nov; 51(22):13086-13094. PubMed ID: 29111691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model predicting social acceptance behavior to implement ELV policy: Exploring the role of knowledge toward ELV policy on social acceptance in Malaysia.
    Ali HM; Sitinjak C; Md Said MH; Hassim JZ; Ismail R; Simic V
    Front Public Health; 2022; 10():1093732. PubMed ID: 36743182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of thermal insulation sandwich panels containing end-of-life vehicle (ELV) headlamp and seat waste.
    Wong YC; Mahyuddin N; Aminuddin AMR
    Waste Manag; 2020 Dec; 118():402-415. PubMed ID: 32947219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.
    Kaya M
    Waste Manag; 2016 Nov; 57():64-90. PubMed ID: 27543174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.