These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30533428)

  • 1. Subcritical Water Extraction of
    Thiruvenkadam S; Izhar S; Hiroyuki Y; Harun R
    Biomed Res Int; 2018; 2018():1931634. PubMed ID: 30533428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcritical Water Technology for Enhanced Extraction of Biochemical Compounds from Chlorella vulgaris.
    Awaluddin SA; Thiruvenkadam S; Izhar S; Hiroyuki Y; Danquah MK; Harun R
    Biomed Res Int; 2016; 2016():5816974. PubMed ID: 27366748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst.
    Thangalazhy-Gopakumar S; Adhikari S; Chattanathan SA; Gupta RB
    Bioresour Technol; 2012 Aug; 118():150-7. PubMed ID: 22705518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water.
    Gai C; Li Y; Peng N; Fan A; Liu Z
    Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound-Enhanced Subcritical CO2 Extraction of Lutein from Chlorella pyrenoidosa.
    Fan XD; Hou Y; Huang XX; Qiu TQ; Jiang JG
    J Agric Food Chem; 2015 May; 63(18):4597-605. PubMed ID: 25837869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcritical water liquefaction of oil palm fruit press fiber in the presence of sodium hydroxide: an optimisation study using response surface methodology.
    Mazaheri H; Lee KT; Bhatia S; Mohamed AR
    Bioresour Technol; 2010 Dec; 101(23):9335-41. PubMed ID: 20656481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermo-chemical conversion of Chlorella pyrenoidosa to liquid biofuels.
    Duan P; Jin B; Xu Y; Yang Y; Bai X; Wang F; Zhang L; Miao J
    Bioresour Technol; 2013 Apr; 133():197-205. PubMed ID: 23425587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process improvements for the supercritical in situ transesterification of carbonized algal biomass.
    Levine RB; Bollas A; Savage PE
    Bioresour Technol; 2013 May; 136():556-64. PubMed ID: 23567731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process optimization of an auger pyrolyzer with heat carrier using response surface methodology.
    Brown JN; Brown RC
    Bioresour Technol; 2012 Jan; 103(1):405-14. PubMed ID: 22023969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic pretreatment of algal biomass has different optimal conditions for biogas and bioethanol routes.
    Bhushan S; Rana MS; Bhandari M; Sharma AK; Simsek H; Prajapati SK
    Chemosphere; 2021 Dec; 284():131264. PubMed ID: 34216928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-objective optimization of media nutrients for enhanced production of algae biomass and fatty acid biosynthesis from Chlorella pyrenoidosa NCIM 2738.
    Kanaga K; Pandey A; Kumar S; Geetanjali
    Bioresour Technol; 2016 Jan; 200():940-50. PubMed ID: 26613206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5.
    Xu Y; Zheng X; Yu H; Hu X
    Bioresour Technol; 2014 Mar; 156():1-5. PubMed ID: 24472700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ohmic heating pretreatment of algal slurry for production of biodiesel.
    Yodsuwan N; Kamonpatana P; Chisti Y; Sirisansaneeyakul S
    J Biotechnol; 2018 Feb; 267():71-78. PubMed ID: 29289547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils.
    Wang F; Chang Z; Duan P; Yan W; Xu Y; Zhang L; Miao J; Fan Y
    Bioresour Technol; 2013 Dec; 149():509-15. PubMed ID: 24140857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of a free-fall reactor for the production of fast pyrolysis bio-oil.
    Ellens CJ; Brown RC
    Bioresour Technol; 2012 Jan; 103(1):374-80. PubMed ID: 22036914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa.
    Gai C; Zhang Y; Chen WT; Zhou Y; Schideman L; Zhang P; Tommaso G; Kuo CT; Dong Y
    Bioresour Technol; 2015 May; 184():328-335. PubMed ID: 25466993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process.
    Miao C; Chakraborty M; Chen S
    Bioresour Technol; 2012 Apr; 110():617-27. PubMed ID: 22330592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production.
    Kothari R; Pathak VV; Kumar V; Singh DP
    Bioresour Technol; 2012 Jul; 116():466-70. PubMed ID: 22525258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of processing conditions on biocrude yields from fast hydrothermal liquefaction of microalgae.
    Faeth JL; Savage PE
    Bioresour Technol; 2016 Apr; 206():290-293. PubMed ID: 26879204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology.
    Patil PD; Gude VG; Mannarswamy A; Cooke P; Munson-McGee S; Nirmalakhandan N; Lammers P; Deng S
    Bioresour Technol; 2011 Jan; 102(2):1399-405. PubMed ID: 20933395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.