BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30533492)

  • 1. Significant expansion and red-shifting of fluorescent protein chromophore determined through computational design and genetic code expansion.
    Wang L; Chen X; Guo X; Li J; Liu Q; Kang F; Wang X; Hu C; Liu H; Gong W; Zhuang W; Liu X; Wang J
    Biophys Rep; 2018; 4(5):273-285. PubMed ID: 30533492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triple-Decker Motif for Red-Shifted Fluorescent Protein Mutants.
    Grigorenko BL; Nemukhin AV; Polyakov IV; Krylov AI
    J Phys Chem Lett; 2013 May; 4(10):1743-7. PubMed ID: 26282988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational designing of 8-hydroxyquinolin-imidazolinone-based fluorescent protein mutants with dramatically red shifted emission: A computational study.
    Chen X; Song J; Chen ZN; Jin T; Long F; Xie H; Zheng Y; Zhuang W; Zhang L
    J Comput Chem; 2018 Oct; 39(27):2307-2315. PubMed ID: 30318750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expansion of the genetic code enables design of a novel "gold" class of green fluorescent proteins.
    Bae JH; Rubini M; Jung G; Wiegand G; Seifert MH; Azim MK; Kim JS; Zumbusch A; Holak TA; Moroder L; Huber R; Budisa N
    J Mol Biol; 2003 May; 328(5):1071-81. PubMed ID: 12729742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering 'Golden' Fluorescence by Selective Pressure Incorporation of Non-canonical Amino Acids and Protein Analysis by Mass Spectrometry and Fluorescence.
    Baumann T; Schmitt FJ; Pelzer A; Spiering VJ; Freiherr von Sass GJ; Friedrich T; Budisa N
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29757279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excited State Electronic Interconversion and Structural Transformation of Engineered Red-Emitting Green Fluorescent Protein Mutant.
    Augustine G; Raghavan S; NumbiRamudu K; Easwaramoorthi S; Shanmugam G; Seetharani Murugaiyan J; Gunasekaran K; Govind C; Karunakaran V; Ayyadurai N
    J Phys Chem B; 2019 Mar; 123(10):2316-2324. PubMed ID: 30789731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational prediction of absorbance maxima for a structurally diverse series of engineered green fluorescent protein chromophores.
    Timerghazin QK; Carlson HJ; Liang C; Campbell RE; Brown A
    J Phys Chem B; 2008 Feb; 112(8):2533-41. PubMed ID: 18247600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of a far-red fluorescent protein, AQ143, shows evidence in support of reported red-shifting chromophore interactions.
    Wannier TM; Mayo SL
    Protein Sci; 2014 Aug; 23(8):1148-53. PubMed ID: 24888769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and properties of the red chromophore of the green-to-red photoconvertible fluorescent protein Kaede and its analogs.
    Yampolsky IV; Kislukhin AA; Amatov TT; Shcherbo D; Potapov VK; Lukyanov S; Lukyanov KA
    Bioorg Chem; 2008 Apr; 36(2):96-104. PubMed ID: 18262585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. To twist or not to twist: From chromophore structure to dynamics inside engineered photoconvertible and photoswitchable fluorescent proteins.
    Krueger TD; Tang L; Chen C; Zhu L; Breen IL; Wachter RM; Fang C
    Protein Sci; 2023 Jan; 32(1):e4517. PubMed ID: 36403093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for red-shifted emission of a GFP-like protein from the marine copepod Chiridius poppei.
    Suto K; Masuda H; Takenaka Y; Tsuji FI; Mizuno H
    Genes Cells; 2009 Jun; 14(6):727-37. PubMed ID: 19469881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and spectrophotometric investigation of two unnatural amino-acid altered chromophores in the superfolder green fluorescent protein.
    Olenginski GM; Piacentini J; Harris DR; Runko NA; Papoutsis BM; Alter JR; Hess KR; Brewer SH; Phillips-Piro CM
    Acta Crystallogr D Struct Biol; 2021 Aug; 77(Pt 8):1010-1018. PubMed ID: 34342274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman spectra of the GFP-like fluorescent proteins.
    Yuan Y; Wang D; Zhang J; Liu J; Chen J; Zhang XE
    Biophys Rep; 2018; 4(5):265-272. PubMed ID: 30533491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure and Raman studies of dsFP483, a cyan fluorescent protein from Discosoma striata.
    Malo GD; Wang M; Wu D; Stelling AL; Tonge PJ; Wachter RM
    J Mol Biol; 2008 May; 378(4):871-86. PubMed ID: 18395223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus.
    Pletneva N; Pletnev V; Tikhonova T; Pakhomov AA; Popov V; Martynov VI; Wlodawer A; Dauter Z; Pletnev S
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1082-93. PubMed ID: 17881826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging.
    Ai HW; Olenych SG; Wong P; Davidson MW; Campbell RE
    BMC Biol; 2008 Mar; 6():13. PubMed ID: 18325109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trans-cis isomerization is responsible for the red-shifted fluorescence in variants of the red fluorescent protein eqFP611.
    Nienhaus K; Nar H; Heilker R; Wiedenmann J; Nienhaus GU
    J Am Chem Soc; 2008 Sep; 130(38):12578-9. PubMed ID: 18761441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral "Fine" Tuning in Fluorescent Proteins: The Case of the GFP-Like Chromophore in the Anionic Protonation State.
    Amat P; Nifosì R
    J Chem Theory Comput; 2013 Jan; 9(1):497-508. PubMed ID: 26589050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative cyclization in GFP-like proteins family. The formation and structure of the chromophore of a purple chromoprotein from Anemonia sulcata.
    Martynov VI; Savitsky AP; Martynova NY; Savitsky PA; Lukyanov KA; Lukyanov SA
    J Biol Chem; 2001 Jun; 276(24):21012-6. PubMed ID: 11259412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid residue at the 165th position tunes EYFP chromophore maturation. A structure-based design.
    Pletneva NV; Maksimov EG; Protasova EA; Mamontova AV; Simonyan TR; Ziganshin RH; Lukyanov KA; Muslinkina L; Pletnev S; Bogdanov AM; Pletnev VZ
    Comput Struct Biotechnol J; 2021; 19():2950-2959. PubMed ID: 34136094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.