These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 30533554)

  • 1. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications.
    Alizadeh-Osgouei M; Li Y; Wen C
    Bioact Mater; 2019 Mar; 4(1):22-36. PubMed ID: 30533554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and mechanical properties of PLLA/PCL/HA composites via a biomimetic, dip coating, and hot compression procedure.
    Charles LF; Shaw MT; Olson JR; Wei M
    J Mater Sci Mater Med; 2010 Jun; 21(6):1845-54. PubMed ID: 20238147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.
    Montufar EB; Casas-Luna M; Horynová M; Tkachenko S; Fohlerová Z; Diaz-de-la-Torre S; Dvořák K; Čelko L; Kaiser J
    Acta Biomater; 2018 Apr; 70():293-303. PubMed ID: 29432984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Bioactivity of Micropatterned Hydroxyapatite Embedded Poly(L-lactic) Acid for a Load-Bearing Implant.
    Kim SM; Kang IG; Cheon GH; Jang TS; Kim HE; Jung HD; Kang MH
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33080777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCs.
    Sun L; Danoux CB; Wang Q; Pereira D; Barata D; Zhang J; LaPointe V; Truckenmüller R; Bao C; Xu X; Habibovic P
    Acta Biomater; 2016 Sep; 42():364-377. PubMed ID: 27318269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alginate composites for bone tissue engineering: a review.
    Venkatesan J; Bhatnagar I; Manivasagan P; Kang KH; Kim SK
    Int J Biol Macromol; 2015 Jan; 72():269-81. PubMed ID: 25020082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: A review.
    Qadir M; Li Y; Wen C
    Acta Biomater; 2019 Apr; 89():14-32. PubMed ID: 30851454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable ceramic-polymer composites for biomedical applications: A review.
    Dziadek M; Stodolak-Zych E; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1175-1191. PubMed ID: 27987674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications: A Critical Review.
    Avcu E; Bastan FE; Guney M; Yildiran Avcu Y; Ur Rehman MA; Boccaccini AR
    Acta Biomater; 2022 Oct; 151():1-44. PubMed ID: 35921991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation.
    Russias J; Saiz E; Nalla RK; Gryn K; Ritchie RO; Tomsia AP
    Mater Sci Eng C Biomim Supramol Syst; 2006 Sep; 26(8):1289-1295. PubMed ID: 26301264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design strategies and applications of nacre-based biomaterials.
    Gerhard EM; Wang W; Li C; Guo J; Ozbolat IT; Rahn KM; Armstrong AD; Xia J; Qian G; Yang J
    Acta Biomater; 2017 May; 54():21-34. PubMed ID: 28274766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances of polymer-based piezoelectric composites for biomedical applications.
    Mokhtari F; Azimi B; Salehi M; Hashemikia S; Danti S
    J Mech Behav Biomed Mater; 2021 Oct; 122():104669. PubMed ID: 34280866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable polymer/hydroxyapatite composites: surface analysis and initial attachment of human osteoblasts.
    Rizzi SC; Heath DJ; Coombes AG; Bock N; Textor M; Downes S
    J Biomed Mater Res; 2001 Jun; 55(4):475-86. PubMed ID: 11288075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocomposites based on hydroxyapatite matrix reinforced with nanostructured monticellite (CaMgSiO
    Kalantari E; Naghib SM; Iravani NJ; Esmaeili R; Naimi-Jamal MR; Mozafari M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():109912. PubMed ID: 31546348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ceramic composites for biomedical applications.
    Rieu J; Goeuriot P
    Clin Mater; 1993; 12(4):211-7. PubMed ID: 10171689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in research on magnesium alloys and magnesium-calcium phosphate composites as biodegradable implant materials.
    Kuśnierczyk K; Basista M
    J Biomater Appl; 2017 Jan; 31(6):878-900. PubMed ID: 27368753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.
    Johnson I; Wang SM; Silken C; Liu H
    Acta Biomater; 2016 May; 36():332-49. PubMed ID: 27006335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical synthesis of poly(lactic-co-glycolic acid)/hydroxyapatite composites for orthopaedic applications.
    Petricca SE; Marra KG; Kumta PN
    Acta Biomater; 2006 May; 2(3):277-86. PubMed ID: 16701887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties and crystallization behavior of hydroxyapatite/poly(butylenes succinate) composites.
    Guo W; Zhang Y; Zhang W
    J Biomed Mater Res A; 2013 Sep; 101(9):2500-6. PubMed ID: 23348918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.