These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30533580)

  • 1. Occupancy Dependency of Maxwell-Stefan Diffusivities in Ordered Crystalline Microporous Materials.
    Krishna R
    ACS Omega; 2018 Nov; 3(11):15743-15753. PubMed ID: 30533580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamically Consistent Methodology for Estimation of Diffusivities of Mixtures of Guest Molecules in Microporous Materials.
    Krishna R
    ACS Omega; 2019 Aug; 4(8):13520-13529. PubMed ID: 31460481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Molecular Simulations to Unravel the Benefits of Characterizing Mixture Permeation in Microporous Membranes in Terms of the Spreading Pressure.
    Krishna R; van Baten JM
    ACS Omega; 2020 Dec; 5(50):32769-32780. PubMed ID: 33376915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen bonding effects in adsorption of water-alcohol mixtures in zeolites and the consequences for the characteristics of the Maxwell-Stefan diffusivities.
    Krishna R; van Baten JM
    Langmuir; 2010 Jul; 26(13):10854-67. PubMed ID: 20411951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion of alkane mixtures in zeolites: validating the maxwell-stefan formulation using MD simulations.
    Krishna R; van Baten JM
    J Phys Chem B; 2005 Apr; 109(13):6386-96. PubMed ID: 16851711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of adsorption thermodynamics on guest diffusivities in nanoporous crystalline materials.
    Krishna R; van Baten JM
    Phys Chem Chem Phys; 2013 Jun; 15(21):7994-8016. PubMed ID: 23628965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating cluster formation in adsorption of CO2, CH4, and Ar in zeolites and metal organic frameworks at subcritical temperatures.
    Krishna R; van Baten JM
    Langmuir; 2010 Mar; 26(6):3981-92. PubMed ID: 19894676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks.
    Liu B; Smit B
    Langmuir; 2009 May; 25(10):5918-26. PubMed ID: 19382791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from molecular dynamics simulation.
    Babarao R; Jiang J
    Langmuir; 2008 May; 24(10):5474-84. PubMed ID: 18433152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Reliable Is the Ideal Adsorbed Solution Theory for the Estimation of Mixture Separation Selectivities in Microporous Crystalline Adsorbents?
    Krishna R; van Baten JM
    ACS Omega; 2021 Jun; 6(23):15499-15513. PubMed ID: 34151128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highlighting a variety of unusual characteristics of adsorption and diffusion in microporous materials induced by clustering of guest molecules.
    Krishna R; van Baten JM
    Langmuir; 2010 Jun; 26(11):8450-63. PubMed ID: 20201595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Molecular Simulations for Elucidation of Thermodynamic Nonidealities in Adsorption of CO
    Krishna R; van Baten JM
    ACS Omega; 2020 Aug; 5(32):20535-20542. PubMed ID: 32832806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidation of Selectivity Reversals for Binary Mixture Adsorption in Microporous Adsorbents.
    Krishna R; van Baten JM
    ACS Omega; 2020 Apr; 5(15):9031-9040. PubMed ID: 32337468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular simulations for adsorption and separation of natural gas in IRMOF-1 and Cu-BTC metal-organic frameworks.
    Martín-Calvo A; García-Pérez E; Manuel Castillo J; Calero S
    Phys Chem Chem Phys; 2008 Dec; 10(47):7085-91. PubMed ID: 19039342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixture diffusion in nanoporous adsorbents: equivalence of Fickian and Maxwell-Stefan approaches.
    Wang Y; LeVan MD
    J Phys Chem B; 2008 Jul; 112(29):8600-4. PubMed ID: 18582007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Rational Design of Microporous Nitrogen-Rich Lanthanide Metal-Organic Frameworks for CO
    Mohan M; Essalhi M; Durette D; Rana LK; Ayevide FK; Maris T; Duong A
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50619-50627. PubMed ID: 33103881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of CO
    Hasegawa Y; Natsui M; Abe C; Ikeda A; Lundin SB
    Membranes (Basel); 2023 Jan; 13(1):. PubMed ID: 36676867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the transport of CO
    Tawalbeh M; Al-Ismaily M; Kruczek B; Tezel FH
    Chemosphere; 2021 Jan; 263():127935. PubMed ID: 32810774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highlighting the Influence of Thermodynamic Coupling on Kinetic Separations with Microporous Crystalline Materials.
    Krishna R
    ACS Omega; 2019 Feb; 4(2):3409-3419. PubMed ID: 30847432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation.
    Babarao R; Hu Z; Jiang J; Chempath S; Sandler SI
    Langmuir; 2007 Jan; 23(2):659-66. PubMed ID: 17209617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.