These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30534046)

  • 41. Interaction between 6-hydroxydopamine and transferrin: "Let my iron go".
    Borisenko GG; Kagan VE; Hsia CJ; Schor NF
    Biochemistry; 2000 Mar; 39(12):3392-400. PubMed ID: 10727233
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxidation of dopamine to aminochrome as a mechanism for neurodegeneration of dopaminergic systems in Parkinson's disease. Possible neuroprotective role of DT-diaphorase.
    Graumann R; Paris I; Martinez-Alvarado P; Rumanque P; Perez-Pastene C; Cardenas SP; Marin P; Diaz-Grez F; Caviedes R; Caviedes P; Segura-Aguilar J
    Pol J Pharmacol; 2002; 54(6):573-9. PubMed ID: 12866711
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.
    Hall SJ; Silver WL
    Glob Chang Biol; 2013 Sep; 19(9):2804-13. PubMed ID: 23606589
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enzymatic oxidation of dopamine: the role of prostaglandin H synthase.
    Hastings TG
    J Neurochem; 1995 Feb; 64(2):919-24. PubMed ID: 7830086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of Dopamine Oxidation on Dopaminergic Neurodegeneration.
    Zhang S; Wang R; Wang G
    ACS Chem Neurosci; 2019 Feb; 10(2):945-953. PubMed ID: 30592597
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancement of iron(II)-dependent reduction of nitrite to nitric oxide by thiocyanate and accumulation of iron(II)/thiocyanate/nitric oxide complex under conditions simulating the mixture of saliva and gastric juice.
    Takahama U; Hirota S
    Chem Res Toxicol; 2012 Jan; 25(1):207-15. PubMed ID: 22145785
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oxidative stress and antioxidant therapy in Parkinson's disease.
    Ebadi M; Srinivasan SK; Baxi MD
    Prog Neurobiol; 1996 Jan; 48(1):1-19. PubMed ID: 8830346
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism Underlying the Effectiveness of Deferiprone in Alleviating Parkinson's Disease Symptoms.
    Sun Y; Pham AN; Waite TD
    ACS Chem Neurosci; 2018 May; 9(5):1118-1127. PubMed ID: 29381045
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease.
    Zuo L; Motherwell MS
    Gene; 2013 Dec; 532(1):18-23. PubMed ID: 23954870
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel bifunctional drugs targeting monoamine oxidase inhibition and iron chelation as an approach to neuroprotection in Parkinson's disease and other neurodegenerative diseases.
    Youdim MB; Fridkin M; Zheng H
    J Neural Transm (Vienna); 2004 Oct; 111(10-11):1455-71. PubMed ID: 15480846
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pathway for the Production of Hydroxyl Radicals during the Microbially Mediated Redox Transformation of Iron (Oxyhydr)oxides.
    Han R; Lv J; Huang Z; Zhang S; Zhang S
    Environ Sci Technol; 2020 Jan; 54(2):902-910. PubMed ID: 31886656
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparative study of the redox-cycling of a quinone (rifamycin S) and a quinonimine (rifabutin) antibiotic by rat liver microsomes.
    Rao DN; Cederbaum AI
    Free Radic Biol Med; 1997; 22(3):439-46. PubMed ID: 8981035
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metals, toxicity and oxidative stress.
    Valko M; Morris H; Cronin MT
    Curr Med Chem; 2005; 12(10):1161-208. PubMed ID: 15892631
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Iron and dopamine: a toxic couple.
    Hare DJ; Double KL
    Brain; 2016 Apr; 139(Pt 4):1026-35. PubMed ID: 26962053
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidative stress and neurodegeneration: the involvement of iron.
    Carocci A; Catalano A; Sinicropi MS; Genchi G
    Biometals; 2018 Oct; 31(5):715-735. PubMed ID: 30014355
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dopamine-dependent cytotoxicity of tetrahydrobiopterin: a possible mechanism for selective neurodegeneration in Parkinson's disease.
    Choi HJ; Kim SW; Lee SY; Hwang O
    J Neurochem; 2003 Jul; 86(1):143-52. PubMed ID: 12807434
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dopamine Autoxidation Is Controlled by Acidic pH.
    Umek N; Geršak B; Vintar N; Šoštarič M; Mavri J
    Front Mol Neurosci; 2018; 11():467. PubMed ID: 30618616
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The neurotoxicity of iron, copper and cobalt in Parkinson's disease through ROS-mediated mechanisms.
    Lan AP; Chen J; Chai ZF; Hu Y
    Biometals; 2016 Aug; 29(4):665-78. PubMed ID: 27349232
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Iron- and manganese-catalyzed autoxidation of dopamine in the presence of L-cysteine: possible insights into iron- and manganese-mediated dopaminergic neurotoxicity.
    Shen XM; Dryhurst G
    Chem Res Toxicol; 1998 Jul; 11(7):824-37. PubMed ID: 9671546
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators.
    Weinreb O; Mandel S; Youdim MBH; Amit T
    Free Radic Biol Med; 2013 Sep; 62():52-64. PubMed ID: 23376471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.