BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30534186)

  • 1. Anticipatory parental effects in a subtropical lizard in response to experimental warming.
    Sun BJ; Wang Y; Wang Y; Lu HL; Du WG
    Front Zool; 2018; 15():51. PubMed ID: 30534186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maternal warming influences reproductive frequency, but not hatchling phenotypes in a multiple-clutched oviparous lizard.
    Lu HL; Wang J; Xu DD; Dang W
    J Therm Biol; 2018 May; 74():303-310. PubMed ID: 29801642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grow fast but don't die young: Maternal effects mediate life-history trade-offs of lizards under climate warming.
    Hao X; Zou TT; Han XZ; Zhang FS; Du WG
    J Anim Ecol; 2021 Jun; 90(6):1550-1559. PubMed ID: 33713452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Context dependence of transgenerational plasticity: the influence of parental temperature depends on offspring environment and sex.
    Schwanz LE; Crawford-Ash J; Gale T
    Oecologia; 2020 Nov; 194(3):391-401. PubMed ID: 33070236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bet hedging in a warming ocean: predictability of maternal environment shapes offspring size variation in marine sticklebacks.
    Shama LN
    Glob Chang Biol; 2015 Dec; 21(12):4387-400. PubMed ID: 26183221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evaluation of reproductive response to climate warming in an oviparous skink.
    Lu H; Wang Y; Tang W; DU W
    Integr Zool; 2013 Jun; 8(2):175-83. PubMed ID: 23731813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard.
    Dayananda B; Gray S; Pike D; Webb JK
    Glob Chang Biol; 2016 Jul; 22(7):2405-14. PubMed ID: 26940852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon.
    Sparks MM; Westley PAH; Falke JA; Quinn TP
    Glob Chang Biol; 2017 Dec; 23(12):5203-5217. PubMed ID: 28586156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sand lizard (Lacerta agilis) phenology in a warming world.
    Ljungström G; Wapstra E; Olsson M
    BMC Evol Biol; 2015 Oct; 15():206. PubMed ID: 26446705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Within-generation and transgenerational plasticity of mate choice in oceanic stickleback under climate change.
    Fuxjäger L; Wanzenböck S; Ringler E; Wegner KM; Ahnelt H; Shama LNS
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180183. PubMed ID: 30966960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Windows of opportunity: Ocean warming shapes temperature-sensitive epigenetic reprogramming and gene expression across gametogenesis and embryogenesis in marine stickleback.
    Fellous A; Wegner KM; John U; Mark FC; Shama LNS
    Glob Chang Biol; 2022 Jan; 28(1):54-71. PubMed ID: 34669228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plastic rates of development and the effect of thermal extremes on offspring fitness in a cold-climate viviparous lizard.
    Cunningham GD; Fitzpatrick LJ; While GM; Wapstra E
    J Exp Zool A Ecol Integr Physiol; 2018 Apr; 329(4-5):262-270. PubMed ID: 29791071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic effects of thermal mean and fluctuations on embryonic development and hatchling traits in a lacertid lizard, Takydromus septentrionalis.
    Du WG; Feng JH
    J Exp Zool A Ecol Genet Physiol; 2008 Mar; 309(3):138-46. PubMed ID: 18236390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forecasting the viability of sea turtle eggs in a warming world.
    Pike DA
    Glob Chang Biol; 2014 Jan; 20(1):7-15. PubMed ID: 24106042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grandparental effects in marine sticklebacks: transgenerational plasticity across multiple generations.
    Shama LN; Wegner KM
    J Evol Biol; 2014 Nov; 27(11):2297-307. PubMed ID: 25264208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parents exposed to warming produce offspring lower in weight and condition.
    Spinks RK; Donelson JM; Bonzi LC; Ravasi T; Munday PL
    Ecol Evol; 2022 Jul; 12(7):e9044. PubMed ID: 35866024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of night-time warming on temperate ectotherm reproduction: potential fitness benefits of climate change for side-blotched lizards.
    Clarke DN; Zani PA
    J Exp Biol; 2012 Apr; 215(Pt 7):1117-27. PubMed ID: 22399656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allocation trade-off under climate warming in experimental amphibian populations.
    Gao X; Jin C; Camargo A; Li Y
    PeerJ; 2015; 3():e1326. PubMed ID: 26500832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed dormancy and germination changes of snowbed species under climate warming: the role of pre- and post-dispersal temperatures.
    Bernareggi G; Carbognani M; Mondoni A; Petraglia A
    Ann Bot; 2016 Sep; 118(3):529-39. PubMed ID: 27390354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental test of body volume constraint on female reproductive output.
    Du WG; Lü D
    J Exp Zool A Ecol Genet Physiol; 2010 Mar; 313(3):123-8. PubMed ID: 20034016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.