BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30534632)

  • 1. Optimal Chemical Grouping and Sorbent Material Design by Data Analysis, Modeling and Dimensionality Reduction Techniques.
    Onel M; Beykal B; Wang M; Grimm FA; Zhou L; Wright FA; Phillips TD; Rusyn I; Pistikopoulos EN
    ESCAPE; 2018; 43():421-426. PubMed ID: 30534632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grouping of complex substances using analytical chemistry data: A framework for quantitative evaluation and visualization.
    Onel M; Beykal B; Ferguson K; Chiu WA; McDonald TJ; Zhou L; House JS; Wright FA; Sheen DA; Rusyn I; Pistikopoulos EN
    PLoS One; 2019; 14(10):e0223517. PubMed ID: 31600275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Next Frontier of Environmental Unknowns: Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials (UVCBs).
    Lai A; Clark AM; Escher BI; Fernandez M; McEwen LR; Tian Z; Wang Z; Schymanski EL
    Environ Sci Technol; 2022 Jun; 56(12):7448-7466. PubMed ID: 35533312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of Representative Constituents for Unknown, Variable, Complex, or Biological Origin Substance Assessment Based on Hierarchical Clustering.
    Yordanova DG; Patterson TJ; North CM; Camenzuli L; Chapkanov AS; Pavlov TS; Mekenyan OG
    Environ Toxicol Chem; 2021 Nov; 40(11):3205-3218. PubMed ID: 34499773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chemical-biological similarity-based grouping of complex substances as a prototype approach for evaluating chemical alternatives.
    Grimm FA; Iwata Y; Sirenko O; Chappell GA; Wright FA; Reif DM; Braisted J; Gerhold DL; Yeakley JM; Shepard P; Seligmann B; Roy T; Boogaard PJ; Ketelslegers HB; Rohde AM; Rusyn I
    Green Chem; 2016 Aug; 18(16):4407-4419. PubMed ID: 28035192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the Texas A&M Superfund Research Program Computational Platform for Data Integration, Visualization, and Analysis.
    Mukherjee R; Onel M; Beykal B; Szafran AT; Stossi F; Mancini MA; Zhou L; Wright FA; Pistikopoulos EN
    ESCAPE; 2019; 46():967-972. PubMed ID: 31612156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative Chemical-Biological Grouping of Complex High Production Volume Substances from Lower Olefin Manufacturing Streams.
    Cordova AC; Klaren WD; Ford LC; Grimm FA; Baker ES; Zhou YH; Wright FA; Rusyn I
    Toxics; 2023 Jul; 11(7):. PubMed ID: 37505552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grouping of UVCB substances with dose-response transcriptomics data from human cell-based assays.
    House JS; Grimm FA; Klaren WD; Dalzell A; Kuchi S; Zhang SD; Lenz K; Boogaard PJ; Ketelslegers HB; Gant TW; Rusyn I; Wright FA
    ALTEX; 2022; 39(3):388–404. PubMed ID: 35288757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UVCB substances: methodology for structural description and application to fate and hazard assessment.
    Dimitrov SD; Georgieva DG; Pavlov TS; Karakolev YH; Karamertzanis PG; Rasenberg M; Mekenyan OG
    Environ Toxicol Chem; 2015 Nov; 34(11):2450-62. PubMed ID: 26053589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of in vivo metabolomics to support read-across for UVCB substances under REACH.
    Kamp H; Kocabas NA; Faulhammer F; Synhaeve N; Rushton E; Flick B; Giri V; Sperber S; Higgins LG; Penman MG; van Ravenzwaay B; Rooseboom M
    Arch Toxicol; 2024 Mar; 98(3):755-768. PubMed ID: 38265474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate-directed risk assessment of chemical mixtures: a case study for cedarwood essential oil.
    Sühring R; Mayer P; Leonards P; MacLeod M
    Environ Sci Process Impacts; 2022 Aug; 24(8):1133-1143. PubMed ID: 35670229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques.
    Lamon L; Asturiol D; Richarz A; Joossens E; Graepel R; Aschberger K; Worth A
    Part Fibre Toxicol; 2018 Sep; 15(1):37. PubMed ID: 30249272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grouping of Petroleum Substances as Example UVCBs by Ion Mobility-Mass Spectrometry to Enable Chemical Composition-Based Read-Across.
    Grimm FA; Russell WK; Luo YS; Iwata Y; Chiu WA; Roy T; Boogaard PJ; Ketelslegers HB; Rusyn I
    Environ Sci Technol; 2017 Jun; 51(12):7197-7207. PubMed ID: 28502166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UVCB substances II: Development of an endpoint-nonspecific procedure for selection of computationally generated representative constituents.
    Kutsarova SS; Yordanova DG; Karakolev YH; Stoeva S; Comber M; Hughes CB; Vaiopoulou E; Dimitrov SD; Mekenyan OG
    Environ Toxicol Chem; 2019 Mar; 38(3):682-694. PubMed ID: 30638278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials.
    Oomen AG; Bleeker EA; Bos PM; van Broekhuizen F; Gottardo S; Groenewold M; Hristozov D; Hund-Rinke K; Irfan MA; Marcomini A; Peijnenburg WJ; Rasmussen K; Jiménez AS; Scott-Fordsmand JJ; van Tongeren M; Wiench K; Wohlleben W; Landsiedel R
    Int J Environ Res Public Health; 2015 Oct; 12(10):13415-34. PubMed ID: 26516872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discriminative embedded clustering: a framework for grouping high-dimensional data.
    Hou C; Nie F; Yi D; Tao D
    IEEE Trans Neural Netw Learn Syst; 2015 Jun; 26(6):1287-99. PubMed ID: 25095267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling for exploring risk assessment approaches of chemical mixtures.
    Yang RS; el-Masri HA; Thomas RS; Constan AA; Tessari JD
    Toxicol Lett; 1995 Sep; 79(1-3):193-200. PubMed ID: 7570656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into possibilities for grouping and read-across for nanomaterials in EU chemicals legislation.
    Mech A; Rasmussen K; Jantunen P; Aicher L; Alessandrelli M; Bernauer U; Bleeker EAJ; Bouillard J; Di Prospero Fanghella P; Draisci R; Dusinska M; Encheva G; Flament G; Haase A; Handzhiyski Y; Herzberg F; Huwyler J; Jacobsen NR; Jeliazkov V; Jeliazkova N; Nymark P; Grafström R; Oomen AG; Polci ML; Riebeling C; Sandström J; Shivachev B; Stateva S; Tanasescu S; Tsekovska R; Wallin H; Wilks MF; Zellmer S; Apostolova MD
    Nanotoxicology; 2019 Feb; 13(1):119-141. PubMed ID: 30182766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.