These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 30534676)
1. Effects of tensile strain and finite size on thermal conductivity in monolayer WSe Yuan K; Zhang X; Li L; Tang D Phys Chem Chem Phys; 2018 Dec; 21(1):468-477. PubMed ID: 30534676 [TBL] [Abstract][Full Text] [Related]
2. Tensile strain and finite size modulation of low lattice thermal conductivity in monolayer TMDCs (HfSe Chen G; Bao W; Wang Z; Tang D Phys Chem Chem Phys; 2023 Mar; 25(13):9225-9237. PubMed ID: 36919457 [TBL] [Abstract][Full Text] [Related]
3. Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe Shafique A; Shin YH Phys Chem Chem Phys; 2017 Dec; 19(47):32072-32078. PubMed ID: 29181465 [TBL] [Abstract][Full Text] [Related]
4. Strain-induced enhancement of thermoelectric performance of TiS Li G; Yao K; Gao G Nanotechnology; 2018 Jan; 29(1):015204. PubMed ID: 29125467 [TBL] [Abstract][Full Text] [Related]
5. First-Principles Determination of Ultralow Thermal Conductivity of monolayer WSe2. Zhou WX; Chen KQ Sci Rep; 2015 Oct; 5():15070. PubMed ID: 26464052 [TBL] [Abstract][Full Text] [Related]
6. Strain effects on phonon transport in antimonene investigated using a first-principles study. Zhang AX; Liu JT; Guo SD; Li HC Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286 [TBL] [Abstract][Full Text] [Related]
7. Phonon thermal transport in ferroelectric Qi H; Wu C; Lu P; Liu C Nanotechnology; 2023 Dec; 35(8):. PubMed ID: 37963408 [TBL] [Abstract][Full Text] [Related]
8. The first-principles and BTE investigation of phonon transport in 1T-TiSe Wang ZL; Chen G; Zhang X; Tang D Phys Chem Chem Phys; 2021 Jan; 23(2):1627-1638. PubMed ID: 33410842 [TBL] [Abstract][Full Text] [Related]
9. Excellent Thermoelectric Properties in monolayer WSe Wang J; Xie F; Cao XH; An SC; Zhou WX; Tang LM; Chen KQ Sci Rep; 2017 Jan; 7():41418. PubMed ID: 28120912 [TBL] [Abstract][Full Text] [Related]
11. Nonmonotonic strain dependence of lattice thermal conductivity in monolayer SiC: a first-principles study. Guo SD; Dong J; Liu JT Phys Chem Chem Phys; 2018 Aug; 20(34):22038-22046. PubMed ID: 30112534 [TBL] [Abstract][Full Text] [Related]
12. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study. Guo SD; Liu JT Phys Chem Chem Phys; 2017 Dec; 19(47):31982-31988. PubMed ID: 29177337 [TBL] [Abstract][Full Text] [Related]
13. Strain-tunable lattice thermal conductivity of the Janus PtSTe monolayer. Pan L; Carrete J; Wang Z J Phys Condens Matter; 2021 Oct; 34(1):. PubMed ID: 34571499 [TBL] [Abstract][Full Text] [Related]
14. Thermal conductivity of biaxial-strained MoS2: sensitive strain dependence and size dependent reduction rate. Zhu L; Zhang T; Sun Z; Li J; Chen G; Yang SA Nanotechnology; 2015 Nov; 26(46):465707. PubMed ID: 26511672 [TBL] [Abstract][Full Text] [Related]
15. Disparate strain response of the thermal transport properties of bilayer penta-graphene as compared to that of monolayer penta-graphene. Sun Z; Yuan K; Zhang X; Qin G; Gong X; Tang D Phys Chem Chem Phys; 2019 Jul; 21(28):15647-15655. PubMed ID: 31268444 [TBL] [Abstract][Full Text] [Related]
16. Significant enhancement of lattice thermal conductivity of monolayer AlN under bi-axial strain: a first principles study. Banerjee A; Das BK; Chattopadhyay KK Phys Chem Chem Phys; 2022 Jul; 24(26):16065-16074. PubMed ID: 35735192 [TBL] [Abstract][Full Text] [Related]
17. Strain Effect on Thermoelectric Performance of InSe Monolayer. Wang Q; Han L; Wu L; Zhang T; Li S; Lu P Nanoscale Res Lett; 2019 Aug; 14(1):287. PubMed ID: 31428878 [TBL] [Abstract][Full Text] [Related]
18. Electric field tuned anisotropic to isotropic thermal transport transition in monolayer borophene without altering its atomic structure. Yang Z; Yuan K; Meng J; Hu M Nanoscale; 2020 Oct; 12(37):19178-19190. PubMed ID: 32926048 [TBL] [Abstract][Full Text] [Related]
19. Why thermal conductivity of CaO is lower than that of CaS: a study from the perspective of phonon splitting of optical mode. Yang Z; Yuan K; Meng J; Zhang X; Tang D; Hu M Nanotechnology; 2021 Jan; 32(2):025709. PubMed ID: 33055376 [TBL] [Abstract][Full Text] [Related]
20. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures. Fu B; Tang G; Li Y Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]