BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 30534726)

  • 1. Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds.
    Ji S; Dube K; Chesterman JP; Fung SL; Liaw CY; Kohn J; Guvendiren M
    Biomater Sci; 2019 Jan; 7(2):560-570. PubMed ID: 30534726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis.
    Cheng CH; Chen YW; Kai-Xing Lee A; Yao CH; Shie MY
    J Mater Sci Mater Med; 2019 Jun; 30(7):78. PubMed ID: 31222566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced osteogenic activity of poly(ester urea) scaffolds using facile post-3D printing peptide functionalization strategies.
    Li S; Xu Y; Yu J; Becker ML
    Biomaterials; 2017 Oct; 141():176-187. PubMed ID: 28688288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells.
    Lin YH; Chuang TY; Chiang WH; Chen IP; Wang K; Shie MY; Chen YW
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109887. PubMed ID: 31500024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro.
    Fairag R; Rosenzweig DH; Ramirez-Garcialuna JL; Weber MH; Haglund L
    ACS Appl Mater Interfaces; 2019 May; 11(17):15306-15315. PubMed ID: 30973708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.
    Wang C; Zhao Q; Wang M
    Biofabrication; 2017 Jun; 9(2):025031. PubMed ID: 28589918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration.
    Martin V; Ribeiro IA; Alves MM; Gonçalves L; Claudio RA; Grenho L; Fernandes MH; Gomes P; Santos CF; Bettencourt AF
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():15-26. PubMed ID: 31029308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering.
    Park J; Lee SJ; Lee H; Park SA; Lee JY
    Carbohydr Polym; 2018 Sep; 196():217-224. PubMed ID: 29891290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosol-Derived Biodegradable Inks with Tunable Properties for 3D Printing.
    Cohen J; Bektas CK; Mullaghy A; Perera MM; Gormley AJ; Kohn J
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4454-4462. PubMed ID: 34396772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Printed Scaffolds with Controlled Micro-/Nanoporous Surface Topography Direct Chondrogenic and Osteogenic Differentiation of Mesenchymal Stem Cells.
    Prasopthum A; Cooper M; Shakesheff KM; Yang J
    ACS Appl Mater Interfaces; 2019 May; 11(21):18896-18906. PubMed ID: 31067023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of bone morphogenic protein-2 loaded on the 3D-printed MesoCS scaffolds.
    Huang KH; Lin YH; Shie MY; Lin CP
    J Formos Med Assoc; 2018 Oct; 117(10):879-887. PubMed ID: 30097222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications.
    Seyednejad H; Gawlitta D; Dhert WJ; van Nostrum CF; Vermonden T; Hennink WE
    Acta Biomater; 2011 May; 7(5):1999-2006. PubMed ID: 21241834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering.
    Wen YT; Dai NT; Hsu SH
    Acta Biomater; 2019 Apr; 88():301-313. PubMed ID: 30825604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithium Chloride-Releasing 3D Printed Scaffold for Enhanced Cartilage Regeneration.
    Li J; Yao Q; Xu Y; Zhang H; Li LL; Wang L
    Med Sci Monit; 2019 May; 25():4041-4050. PubMed ID: 31147532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells.
    Hou Y; Xie W; Achazi K; Cuellar-Camacho JL; Melzig MF; Chen W; Haag R
    Acta Biomater; 2018 Sep; 77():28-37. PubMed ID: 29981495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D and Porous RGDC-Functionalized Polyester-Based Scaffolds as a Niche to Induce Osteogenic Differentiation of Human Bone Marrow Stem Cells.
    Yassin MA; Fuoco T; Mohamed-Ahmed S; Mustafa K; Finne-Wistrand A
    Macromol Biosci; 2019 Jun; 19(6):e1900049. PubMed ID: 31050389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering.
    Müller M; Fisch P; Molnar M; Eggert S; Binelli M; Maniura-Weber K; Zenobi-Wong M
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110510. PubMed ID: 31924006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.