These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 30534760)
1. A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting. Kawde A; Annamalai A; Sellstedt A; Glatzel P; Wågberg T; Messinger J Dalton Trans; 2019 Jan; 48(4):1166-1170. PubMed ID: 30534760 [TBL] [Abstract][Full Text] [Related]
2. Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance. Li Y; Wei X; Zhu B; Wang H; Tang Y; Sum TC; Chen X Nanoscale; 2016 Jun; 8(21):11284-90. PubMed ID: 27189633 [TBL] [Abstract][Full Text] [Related]
3. Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting. Wang M; Pyeon M; Gönüllü Y; Kaouk A; Shen S; Guo L; Mathur S Nanoscale; 2015 Jun; 7(22):10094-100. PubMed ID: 25980730 [TBL] [Abstract][Full Text] [Related]
4. Engineered Sn- and Mg-doped hematite photoanodes for efficient photoelectrochemical water oxidation. Cai J; Chen H; Liu C; Yin S; Li H; Xu L; Liu H; Xie Q Dalton Trans; 2020 Aug; 49(32):11282-11289. PubMed ID: 32760974 [TBL] [Abstract][Full Text] [Related]
5. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting. Mao L; Huang YC; Fu Y; Dong CL; Shen S Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607 [TBL] [Abstract][Full Text] [Related]
6. In situ growth of α-Fe Li C; Chen Z; Yuan W; Xu QH; Li CM Nanoscale; 2019 Jan; 11(3):1111-1122. PubMed ID: 30574647 [TBL] [Abstract][Full Text] [Related]
7. Multilayered Hematite Nanowires with Thin-Film Silicon Photovoltaics in an All-Earth-Abundant Hybrid Tandem Device for Solar Water Splitting. Urbain F; Tang P; Smirnov V; Welter K; Andreu T; Finger F; Arbiol J; Morante JR ChemSusChem; 2019 Apr; 12(7):1428-1436. PubMed ID: 30633450 [TBL] [Abstract][Full Text] [Related]
8. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance. Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649 [TBL] [Abstract][Full Text] [Related]
9. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting. Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489 [TBL] [Abstract][Full Text] [Related]
10. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation. Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603 [TBL] [Abstract][Full Text] [Related]
11. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System. Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672 [TBL] [Abstract][Full Text] [Related]
12. Photoanodes based on TiO Kment S; Riboni F; Pausova S; Wang L; Wang L; Han H; Hubicka Z; Krysa J; Schmuki P; Zboril R Chem Soc Rev; 2017 Jun; 46(12):3716-3769. PubMed ID: 28397882 [TBL] [Abstract][Full Text] [Related]
13. Exploratory Study of Zn Lin H; Long X; Hu J; Qiu Y; Wang Z; Ma M; An Y; Yang S ACS Appl Mater Interfaces; 2018 Apr; 10(13):10918-10926. PubMed ID: 29578676 [TBL] [Abstract][Full Text] [Related]
14. Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation. Xiong D; Li W; Wang X; Liu L Nanotechnology; 2016 Sep; 27(37):375401. PubMed ID: 27486842 [TBL] [Abstract][Full Text] [Related]
15. Enhanced Photoelectrochemical Water Oxidation Performance in Bilayer TiO Li H; Yin M; Li X; Mo R ChemSusChem; 2021 Jun; 14(11):2331-2340. PubMed ID: 33650268 [TBL] [Abstract][Full Text] [Related]
16. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution. Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113 [TBL] [Abstract][Full Text] [Related]
17. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese. Gurudayal ; Chiam SY; Kumar MH; Bassi PS; Seng HL; Barber J; Wong LH ACS Appl Mater Interfaces; 2014 Apr; 6(8):5852-9. PubMed ID: 24702963 [TBL] [Abstract][Full Text] [Related]
18. Boosting Unassisted Alkaline Solar Water Splitting Using Silicon Photocathode with TiO Jun SE; Hong SP; Choi S; Kim C; Ji SG; Park IJ; Lee SA; Yang JW; Lee TH; Sohn W; Kim JY; Jang HW Small; 2021 Oct; 17(39):e2103457. PubMed ID: 34453489 [TBL] [Abstract][Full Text] [Related]
19. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles. Chen B; Fan W; Mao B; Shen H; Shi W Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164 [TBL] [Abstract][Full Text] [Related]
20. Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting. Chen D; Liu Z ChemSusChem; 2018 Oct; 11(19):3438-3448. PubMed ID: 30098118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]