These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 30534772)
61. A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties. Li Z; Bao H; Miao X; Chen X J Colloid Interface Sci; 2011 May; 357(2):286-91. PubMed ID: 21377162 [TBL] [Abstract][Full Text] [Related]
62. Porous CuO superstructure: precursor-mediated fabrication, gas sensing and photocatalytic properties. Xu H; Zhu G; Zheng D; Xi C; Xu X; Shen X J Colloid Interface Sci; 2012 Oct; 383(1):75-81. PubMed ID: 22795948 [TBL] [Abstract][Full Text] [Related]
63. Electrochemical fabrication and characterization of Cu/Cu2O multi-layered micro and nanorods in Li-ion batteries. Rehnlund D; Valvo M; Tai CW; Ångström J; Sahlberg M; Edström K; Nyholm L Nanoscale; 2015 Aug; 7(32):13591-604. PubMed ID: 26206712 [TBL] [Abstract][Full Text] [Related]
64. Application of Cu Li H; Ban L; Niu Z; Huang X; Meng P; Han X; Zhang Y; Zhang H; Zhao Y Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31514403 [TBL] [Abstract][Full Text] [Related]
65. Nested seaweed cellulose fiber deposited with cuprous oxide nanorods for antimicrobial activity. Bhutiya PL; Misra N; Abdul Rasheed M; Zaheer Hasan S Int J Biol Macromol; 2018 Oct; 117():435-444. PubMed ID: 29859276 [TBL] [Abstract][Full Text] [Related]
66. Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Liu M; Liu R; Chen W Biosens Bioelectron; 2013 Jul; 45():206-12. PubMed ID: 23500365 [TBL] [Abstract][Full Text] [Related]
67. A facile single-source route to CdS nanorods. Cai W; Li Z; Sui J Nanotechnology; 2008 Nov; 19(46):465606. PubMed ID: 21836253 [TBL] [Abstract][Full Text] [Related]
68. Facile preparation of ferric giniite hollow microspheres and their enhanced Fenton-like catalytic performance under visible-light irradiation. Zhang X; Zhang Y; Gao L; Yu H; Wei Y J Colloid Interface Sci; 2015 Aug; 452():24-32. PubMed ID: 25910223 [TBL] [Abstract][Full Text] [Related]
69. A novel highly selective and sensitive detection of serotonin based on Ag/polypyrrole/Cu Selvarajan S; Suganthi A; Rajarajan M Ultrason Sonochem; 2018 Jun; 44():319-330. PubMed ID: 29680617 [TBL] [Abstract][Full Text] [Related]
70. A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells. Li C; Li Y; Delaunay JJ ACS Appl Mater Interfaces; 2014 Jan; 6(1):480-6. PubMed ID: 24299015 [TBL] [Abstract][Full Text] [Related]
71. Microemulsion-based synthesis of porous zinc ferrite nanorods and its application in a room-temperature ethanol sensor. Zhu H; Gu X; Zuo D; Wang Z; Wang N; Yao K Nanotechnology; 2008 Oct; 19(40):405503. PubMed ID: 21832619 [TBL] [Abstract][Full Text] [Related]
72. Designing CuOx Nanoparticle-Decorated CeO2 Nanocubes for Catalytic Soot Oxidation: Role of the Nanointerface in the Catalytic Performance of Heterostructured Nanomaterials. Sudarsanam P; Hillary B; Mallesham B; Rao BG; Amin MH; Nafady A; Alsalme AM; Reddy BM; Bhargava SK Langmuir; 2016 Mar; 32(9):2208-15. PubMed ID: 26886079 [TBL] [Abstract][Full Text] [Related]
73. A comparative study on the Mn/TiO Zhang Y; Huang T; Xiao R; Xu H; Shen K; Zhou C Environ Technol; 2018 May; 39(10):1284-1294. PubMed ID: 28504006 [TBL] [Abstract][Full Text] [Related]
74. Improving water splitting performance of Cu2O through a synergistic "two-way transfer" process of Cu and graphene. Zhang D; Wei D; Cui Z; Wang S; Yang S; Cao M; Hu C Phys Chem Chem Phys; 2014 Dec; 16(46):25531-6. PubMed ID: 25350462 [TBL] [Abstract][Full Text] [Related]
75. Porous iron molybdate nanorods: in situ diffusion synthesis and low-temperature H2S gas sensing. Chen YJ; Gao XM; Di XP; Ouyang QY; Gao P; Qi LH; Li CY; Zhu CL ACS Appl Mater Interfaces; 2013 Apr; 5(8):3267-74. PubMed ID: 23521560 [TBL] [Abstract][Full Text] [Related]
76. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Xiong S; Yuan C; Zhang X; Xi B; Qian Y Chemistry; 2009; 15(21):5320-6. PubMed ID: 19350591 [TBL] [Abstract][Full Text] [Related]
77. Controlled Synthesis of 3D Flower-like Ni Zheng H; Huang X; Wu Z; Gao H; Dong W; Wang G Chem Asian J; 2017 Nov; 12(22):2956-2961. PubMed ID: 28862374 [TBL] [Abstract][Full Text] [Related]
78. Au@Cu2O stellated polytope with core-shelled nanostructure for high-performance adsorption and visible-light-driven photodegradation of cationic and anionic dyes. Wu X; Cai J; Li S; Zheng F; Lai Z; Zhu L; Chen T J Colloid Interface Sci; 2016 May; 469():138-146. PubMed ID: 26874979 [TBL] [Abstract][Full Text] [Related]
79. Designed synthesis of a novel BiVO₄-Cu₂O-TiO₂ as an efficient visible-light-responding photocatalyst. Yuan H; Liu J; Li J; Li Y; Wang X; Zhang Y; Jiang J; Chen S; Zhao C; Qian D J Colloid Interface Sci; 2015 Apr; 444():58-66. PubMed ID: 25585288 [TBL] [Abstract][Full Text] [Related]
80. Ultrasound assisted synthesis of {[Cu2(BDC)2(dabco)].2DMF.2H2O} nanostructures in the presence of modulator; new precursor to prepare nano copper oxides. Alavi MA; Morsali A Ultrason Sonochem; 2014 Mar; 21(2):674-80. PubMed ID: 24144482 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]