BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30535346)

  • 1. Thoracic endografting increases cardiac afterload and leads to left ventricular hypertrophy in dogs.
    Yamashita Y; Oishi Y; Motomatsu Y; Hirayama K; Harada T; Ushijima T; Fujita S; Kimura S; Sonoda H; Tatewaki H; Tanoue Y; Sunagawa G; Nishikawa T; Saku K; Shiose A
    Eur J Cardiothorac Surg; 2019 Apr; 55(4):618-625. PubMed ID: 30535346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endografting of the descending thoracic aorta increases ascending aortic input impedance and attenuates pressure transmission in dogs.
    Dobson G; Flewitt J; Tyberg JV; Moore R; Karamanoglu M
    Eur J Vasc Endovasc Surg; 2006 Aug; 32(2):129-35. PubMed ID: 16564712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise stress echocardiogram for the evaluation of change in the ventricular-arterial interaction after thoracic endovascular aortic repair.
    Hiraoka A; Toki M; Hayashida A; Chikazawa G; Yoshida K; Sakaguchi T; Yoshitaka H
    Eur J Cardiothorac Surg; 2019 Apr; 55(4):632-638. PubMed ID: 30351345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chronotropic and inotropic stimulation on the coronary pressure-flow relation in left ventricular hypertrophy.
    Duncker DJ; Bache RJ
    Basic Res Cardiol; 1997 Aug; 92(4):271-86. PubMed ID: 9342434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propofol alters left ventricular afterload as evaluated by aortic input impedance in dogs.
    Lowe D; Hettrick DA; Pagel PS; Warltier DC
    Anesthesiology; 1996 Feb; 84(2):368-76. PubMed ID: 8602668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inelastic vascular prosthesis for proximal aorta increases pulsatile arterial load and causes left ventricular hypertrophy in dogs.
    Morita S; Asou T; Kuboyama I; Harasawa Y; Sunagawa K; Yasui H
    J Thorac Cardiovasc Surg; 2002 Oct; 124(4):768-74. PubMed ID: 12324735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Left Ventricular Pressure-Volume Area and Stroke Work in Porcine Model of Ascending Compared to Descending Thoracic Aorta Stenosis Creating a Chronic Early Vs. Late Left Ventricular Afterload Increase.
    Popevska S; Rademakers F
    Pril (Makedon Akad Nauk Umet Odd Med Nauki); 2022 Jul; 43(2):111-121. PubMed ID: 35843916
    [No Abstract]   [Full Text] [Related]  

  • 8. Left ventricular hypertrophy induced by reduced aortic compliance.
    Ioannou CV; Morel DR; Katsamouris AN; Katranitsa S; Startchik I; Kalangos A; Westerhof N; Stergiopulos N
    J Vasc Res; 2009; 46(5):417-25. PubMed ID: 19155633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of extraanatomic bypass on aortic input impedance studied in open chest dogs. Should the vascular prosthesis be compliant to unload the left ventricle?
    Morita S; Kuboyama I; Asou T; Tokunaga K; Nose Y; Nakamura M; Harasawa Y; Sunagawa K
    J Thorac Cardiovasc Surg; 1991 Nov; 102(5):774-83. PubMed ID: 1834892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of aortic impedance on the development of pressure-overload left ventricular hypertrophy in rats.
    Kobayashi S; Yano M; Kohno M; Obayashi M; Hisamatsu Y; Ryoke T; Ohkusa T; Yamakawa K; Matsuzaki M
    Circulation; 1996 Dec; 94(12):3362-8. PubMed ID: 8989152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total aortic arch replacement: superior ventriculo-arterial coupling with decellularized allografts compared with conventional prostheses.
    Weymann A; Radovits T; Schmack B; Korkmaz S; Li S; Chaimow N; Pätzold I; Becher PM; Hartyánszky I; Soós P; Merkely G; Németh BT; Istók R; Veres G; Merkely B; Terytze K; Karck M; Szabó G
    PLoS One; 2014; 9(7):e103588. PubMed ID: 25079587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of changes in afterload impedance on left ventricular ejection in isolated canine hearts: dissociation of end ejection from end systole.
    Nishioka O; Maruyama Y; Ashikawa K; Isoyama S; Satoh S; Suzuki H; Watanabe J; Watanabe H; Shimizu Y; Ino-Oka E
    Cardiovasc Res; 1987 Feb; 21(2):107-18. PubMed ID: 3664540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased aortic compliance maintains left ventricular performance at lower energetic cost.
    Kolh P; D'Orio V; Lambermont B; Gerard P; Gommes C; Limet R
    Eur J Cardiothorac Surg; 2000 Mar; 17(3):272-8. PubMed ID: 10758388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autogenous cardiac assist with chronic descending thoracic aortomyoplasty.
    Lazzara RR; Trumble DR; Magovern JA
    Ann Thorac Surg; 1994 Jun; 57(6):1540-4. PubMed ID: 8010799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Left ventricular performance is closely related to the physical properties of the arterial system: Landmark clinical investigations in the 1970s and 1980s.
    Mérillon JP; Ennezat PV; Guiomard A; Masquet-Gourgon C; Aumont MC; Gourgon R
    Arch Cardiovasc Dis; 2014 Oct; 107(10):554-62. PubMed ID: 25304173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ventricular energetics after the Fontan operation: contractility-afterload mismatch.
    Szabó G; Buhmann V; Graf A; Melnitschuk S; Bährle S; Vahl CF; Hagl S
    J Thorac Cardiovasc Surg; 2003 May; 125(5):1061-9. PubMed ID: 12771880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of changes in the aortic input impedance on systolic pressure-ejected volume relationships in the isolated supported canine left ventricle.
    Ishide N; Shimizu Y; Maruyama Y; Koiwa Y; Nunokawa T; Isoyama S; Kitaoka S; Tamaki K; Ino-Oka E; Takishima T
    Cardiovasc Res; 1980 Apr; 14(4):229-43. PubMed ID: 7427971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desflurane, sevoflurane, and isoflurane impair canine left ventricular-arterial coupling and mechanical efficiency.
    Hettrick DA; Pagel PS; Warltier DC
    Anesthesiology; 1996 Aug; 85(2):403-13. PubMed ID: 8712457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased left ventricular contractility during cross-clamping of the descending thoracic aorta.
    Aakhus S; Aadahl P; Strømholm T; Myhre HO
    J Cardiothorac Vasc Anesth; 1995 Oct; 9(5):497-502. PubMed ID: 8547548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure-flow loops and instantaneous input impedance in the thoracic aorta: another way to assess the effect of aortic bypass graft implantation on myocardial, brain, and subdiaphragmatic perfusion.
    Mekkaoui C; Rolland PH; Friggi A; Rasigni M; Mesana TG
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):699-710. PubMed ID: 12658214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.