BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 30535514)

  • 1. Synthesis of CuO/g-C
    Huang Y; Tan Y; Feng C; Wang S; Wu H; Zhang G
    Mikrochim Acta; 2018 Dec; 186(1):10. PubMed ID: 30535514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-assisted synthesis of graphene modified CuO nanoparticles for voltammetric enzyme-free sensing of glucose at biological pH values.
    Foroughi F; Rahsepar M; Hadianfard MJ; Kim H
    Mikrochim Acta; 2017 Dec; 185(1):57. PubMed ID: 29594397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-enzymatic glucose sensor based on a g-C
    Lotfi Z; Gholivand MB; Shamsipur M
    Anal Biochem; 2021 Mar; 616():114062. PubMed ID: 33285122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nanocomposite consisting of gold nanobipyramids and multiwalled carbon nanotubes for amperometric nonenzymatic sensing of glucose and hydrogen peroxide.
    Mei H; Wang X; Zeng T; Huang L; Wang Q; Ru D; Huang T; Tian F; Wu H; Gao J
    Mikrochim Acta; 2019 Mar; 186(4):235. PubMed ID: 30868243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CuO/Cu composite nanospheres on a TiO
    Zhou Z; Zhu Z; Cui F; Shao J; Zhou HS
    Mikrochim Acta; 2020 Jan; 187(2):123. PubMed ID: 31932917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of porous Co
    Yang Z; Bai X; Zhu S; Qi C
    Mikrochim Acta; 2020 Jan; 187(1):98. PubMed ID: 31907634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A high-performance nonenzymatic glucose sensor made of CuO-SWCNT nanocomposites.
    Quoc Dung N; Patil D; Jung H; Kim D
    Biosens Bioelectron; 2013 Apr; 42():280-6. PubMed ID: 23208099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of a glassy carbon electrode modified with reduced graphene oxide and overoxidized electropolymerized polypyrrole, and its application to the determination of dopamine in the presence of ascorbic acid and uric acid.
    Chen X; Li D; Ma W; Yang T; Zhang Y; Zhang D
    Mikrochim Acta; 2019 Jun; 186(7):407. PubMed ID: 31183562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hollow CuO
    Long L; Liu X; Chen L; Li D; Jia J
    Mikrochim Acta; 2019 Jan; 186(2):74. PubMed ID: 30627840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltammetric sensing of sulfamethoxazole using a glassy carbon electrode modified with a graphitic carbon nitride and zinc oxide nanocomposite.
    Balasubramanian P; Settu R; Chen SM; Chen TW
    Mikrochim Acta; 2018 Jul; 185(8):396. PubMed ID: 30066186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amperometric sensing of ascorbic acid by using a glassy carbon electrode modified with mesoporous carbon nanorods.
    Li X; Liu J; Sun M; Sha T; Bo X; Zhou M
    Mikrochim Acta; 2018 Sep; 185(10):474. PubMed ID: 30242490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step synthesis of a Methylene Blue@ZIF-8-reduced graphene oxide nanocomposite and its application to electrochemical sensing of rutin.
    Wang Z; Yu G; Xia J; Zhang F; Liu Q
    Mikrochim Acta; 2018 May; 185(5):279. PubMed ID: 29725773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid material composed of reduced graphene oxide and porous carbon prepared by carbonization of a zeolitic imidazolate framework (type ZIF-8) for voltammetric determination of chloramphenicol.
    Yuan Y; Xu X; Xia J; Zhang F; Wang Z; Liu Q
    Mikrochim Acta; 2019 Feb; 186(3):191. PubMed ID: 30778741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltammetric determination of the antimalarial drug chloroquine using a glassy carbon electrode modified with reduced graphene oxide on WS
    Srivastava M; Tiwari P; Mall VK; Srivastava SK; Prakash R
    Mikrochim Acta; 2019 Jun; 186(7):415. PubMed ID: 31187276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltammetric determination of caffeic acid by using a glassy carbon electrode modified with a chitosan-protected nanohybrid composed of carbon black and reduced graphene oxide.
    Pandian K; Mohana Soundari D; Rudra Showdri P; Kalaiyarasi J; Gopinath SCB
    Mikrochim Acta; 2019 Jan; 186(2):54. PubMed ID: 30618010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nanocomposite consisting of cuprous oxide supported on graphitic carbon nitride nanosheets for non-enzymatic electrochemical sensing of 8-hydroxy-2'-deoxyguanosine.
    Rajaji U; Selvi SV; Chen SM; Chinnapaiyan S; Chen TW; Govindasamy M
    Mikrochim Acta; 2020 Jul; 187(8):459. PubMed ID: 32686000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A ruthenium(IV) disulfide based non-enzymatic sensor for selective and sensitive amperometric determination of dopamine.
    Deepika J; Sha R; Badhulika S
    Mikrochim Acta; 2019 Jun; 186(7):480. PubMed ID: 31250208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of Cu₂O-Reduced Graphene Nanocomposite Modified Electrodes towards Ultrasensitive Dopamine Detection.
    He Q; Liu J; Liu X; Li G; Deng P; Liang J
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29329206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A glassy carbon electrode modified with a copper tungstate and polyaniline nanocomposite for voltammetric determination of quercetin.
    Ponnaiah SK; Periakaruppan P
    Mikrochim Acta; 2018 Oct; 185(11):524. PubMed ID: 30374580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesoporous g-C
    Wang ZW; Liu HJ; Li CY; Chen X; Weerasooriya R; Wei J; Lv J; Lv P; Wu YC
    Talanta; 2020 Feb; 208():120410. PubMed ID: 31816701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.