These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 30535592)
1. Fabrication of sulphonated poly(ethylene glycol)-diacrylate hydrogel as a bone grafting scaffold. Li H; Ma T; Zhang M; Zhu J; Liu J; Tan F J Mater Sci Mater Med; 2018 Dec; 29(12):187. PubMed ID: 30535592 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold. Tan F; Xu X; Deng T; Yin M; Zhang X; Wang J Biomed Mater; 2012 Oct; 7(5):055009. PubMed ID: 22945346 [TBL] [Abstract][Full Text] [Related]
3. Charge density is more important than charge polarity in enhancing osteoblast-like cell attachment on poly(ethylene glycol)-diacrylate hydrogel. Tan F; Liu J; Liu M; Wang J Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():330-339. PubMed ID: 28482535 [TBL] [Abstract][Full Text] [Related]
4. Potential of hydrogels based on poly(ethylene glycol) and sebacic acid as orthopedic tissue engineering scaffolds. Kim J; Hefferan TE; Yaszemski MJ; Lu L Tissue Eng Part A; 2009 Aug; 15(8):2299-307. PubMed ID: 19292677 [TBL] [Abstract][Full Text] [Related]
5. The effects of hydroxyapatite nanoparticles embedded in a MMP-sensitive photoclickable PEG hydrogel on encapsulated MC3T3-E1 pre-osteoblasts. Carles-Carner M; Saleh LS; Bryant SJ Biomed Mater; 2018 May; 13(4):045009. PubMed ID: 29611815 [TBL] [Abstract][Full Text] [Related]
6. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering. Çetin D; Kahraman AS; Gümüşderelioğlu M J Biomater Sci Polym Ed; 2011; 22(9):1157-78. PubMed ID: 20615330 [TBL] [Abstract][Full Text] [Related]
8. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds. Jiang CP; Chen YY; Hsieh MF; Lee HM Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function. Subramani K; Birch MA Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Kim J; Lee KW; Hefferan TE; Currier BL; Yaszemski MJ; Lu L Biomacromolecules; 2008 Jan; 9(1):149-57. PubMed ID: 18072747 [TBL] [Abstract][Full Text] [Related]
11. The in vitro effects of macrophages on the osteogenic capabilities of MC3T3-E1 cells encapsulated in a biomimetic poly(ethylene glycol) hydrogel. Saleh LS; Carles-Carner M; Bryant SJ Acta Biomater; 2018 Apr; 71():37-48. PubMed ID: 29505890 [TBL] [Abstract][Full Text] [Related]
12. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel. Chen Y; Zhang F; Fu Q; Liu Y; Wang Z; Qi N J Biomater Appl; 2016 Sep; 31(3):317-27. PubMed ID: 27496540 [TBL] [Abstract][Full Text] [Related]
13. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. Igwe JC; Mikael PE; Nukavarapu SP J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304 [TBL] [Abstract][Full Text] [Related]
15. Development and characterization of a photo-cross-linked functionalized type-I collagen (Oreochromis niloticus) and polyethylene glycol diacrylate hydrogel. Bao Z; Gao M; Fan X; Cui Y; Yang J; Peng X; Xian M; Sun Y; Nian R Int J Biol Macromol; 2020 Jul; 155():163-173. PubMed ID: 32229213 [TBL] [Abstract][Full Text] [Related]
16. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Dhivya S; Saravanan S; Sastry TP; Selvamurugan N J Nanobiotechnology; 2015 Jun; 13():40. PubMed ID: 26065678 [TBL] [Abstract][Full Text] [Related]
17. Construction of a PEGDA/chitosan hydrogel incorporating mineralized copper-doped mesoporous silica nanospheres for accelerated bone regeneration. Hia EM; Jang SR; Maharjan B; Park J; Park CH; Kim CS Int J Biol Macromol; 2024 Mar; 262(Pt 2):130218. PubMed ID: 38367780 [TBL] [Abstract][Full Text] [Related]
18. Gentamycin-loaded halloysite-based hydrogel nanocomposites for bone tissue regeneration: fabrication, evaluation of the antibacterial activity and cell response. Same S; Navidi G; Samee G; Abedi F; Aghazadeh M; Milani M; Akbarzadeh A; Davaran S Biomed Mater; 2022 Oct; 17(6):. PubMed ID: 36150376 [TBL] [Abstract][Full Text] [Related]
19. Novel chitosan hydrogel formed by ethylene glycol chitosan, 1,6-diisocyanatohexan and polyethylene glycol-400 for tissue engineering scaffold: in vitro and in vivo evaluation. Chen Z; Zhao M; Liu K; Wan Y; Li X; Feng G J Mater Sci Mater Med; 2014 Aug; 25(8):1903-13. PubMed ID: 24805882 [TBL] [Abstract][Full Text] [Related]
20. Cu-MSNs and ZnO nanoparticles incorporated poly(ethylene glycol) diacrylate/sodium alginate double network hydrogel for simultaneous enhancement of osteogenic differentiation. Hia EM; Jang SR; Maharjan B; Park J; Park CH Colloids Surf B Biointerfaces; 2024 Apr; 236():113804. PubMed ID: 38428209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]