BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 30535639)

  • 1. Solvent stable microbial lipases: current understanding and biotechnological applications.
    Priyanka P; Tan Y; Kinsella GK; Henehan GT; Ryan BJ
    Biotechnol Lett; 2019 Feb; 41(2):203-220. PubMed ID: 30535639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications.
    Ismail AR; Kashtoh H; Baek KH
    Int J Biol Macromol; 2021 Sep; 187():127-142. PubMed ID: 34298046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent Tolerance Improvement of Lipases Enhanced Their Applications: State of the Art.
    Chen M; Jin T; Nian B; Cheng W
    Molecules; 2024 May; 29(11):. PubMed ID: 38893320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filling the Void: Introducing Aromatic Interactions into Solvent Tunnels To Enhance Lipase Stability in Methanol.
    Gihaz S; Kanteev M; Pazy Y; Fishman A
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical treatments for modification and immobilization to improve the solvent-stability of lipase.
    Matsumoto T; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Nov; 35(12):193. PubMed ID: 31773289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the rationale behind organic solvent stability of lipases.
    Chakravorty D; Parameswaran S; Dubey VK; Patra S
    Appl Biochem Biotechnol; 2012 Jun; 167(3):439-61. PubMed ID: 22562495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel thermostable and organic solvent-tolerant lipase from Xanthomonas oryzae pv. oryzae YB103: screening, purification and characterization.
    Mo Q; Liu A; Guo H; Zhang Y; Li M
    Extremophiles; 2016 Mar; 20(2):157-65. PubMed ID: 26791383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding thermal and organic solvent stability of thermoalkalophilic lipases: insights from computational predictions and experiments.
    Shehata M; Timucin E; Venturini A; Sezerman OU
    J Mol Model; 2020 May; 26(6):122. PubMed ID: 32383051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toluene promotes lid 2 interfacial activation of cold active solvent tolerant lipase from Pseudomonas fluorescens strain AMS8.
    Yaacob N; Mohamad Ali MS; Salleh AB; Rahman RNZRA; Leow ATC
    J Mol Graph Model; 2016 Jul; 68():224-235. PubMed ID: 27474867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial lipases: at the interface of aqueous and non-aqueous media. A review.
    Verma ML; Azmi W; Kanwar SS
    Acta Microbiol Immunol Hung; 2008 Sep; 55(3):265-94. PubMed ID: 18800594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of enzyme tolerance against organic solvents: Insights from molecular dynamics simulation.
    Mohtashami M; Fooladi J; Haddad-Mashadrizeh A; Housaindokht MR; Monhemi H
    Int J Biol Macromol; 2019 Feb; 122():914-923. PubMed ID: 30445665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atypical organic-solvent tolerant bacterial hormone sensitive lipase-like homologue EstAG1 from Staphylococcus saprophyticus AG1: Synthesis and characterization.
    Gricajeva A; Bikutė I; Kalėdienė L
    Int J Biol Macromol; 2019 Jun; 130():253-265. PubMed ID: 30797006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilized lipases-based nano-biocatalytic systems - A versatile platform with incredible biotechnological potential.
    Bilal M; Fernandes CD; Mehmood T; Nadeem F; Tabassam Q; Ferreira LFR
    Int J Biol Macromol; 2021 Apr; 175():108-122. PubMed ID: 33548312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of acetaldehyde-induced deactivation of microbial lipases.
    Franken B; Eggert T; Jaeger KE; Pohl M
    BMC Biochem; 2011 Feb; 12():10. PubMed ID: 21342514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel eurythermic and thermostale lipase LipM from Pseudomonas moraviensis M9 and its application in the partial hydrolysis of algal oil.
    Yang W; Cao H; Xu L; Zhang H; Yan Y
    BMC Biotechnol; 2015 Oct; 15():94. PubMed ID: 26463643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production.
    Sasso F; Natalello A; Castoldi S; Lotti M; Santambrogio C; Grandori R
    Biotechnol J; 2016 Jul; 11(7):954-60. PubMed ID: 27067648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Strategies for exploiting microbial lipase resource and improving lipase biocatalyst--a review].
    Jinyong Y; Yunjun Y
    Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1276-81. PubMed ID: 19062657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of lipase from Candida cylindracea with dextran using the borane-pyridine complex to improve organic solvent stability.
    Kajiwara S; Komatsu K; Yamada R; Matsumoto T; Yasuda M; Ogino H
    J Biotechnol; 2019 Apr; 296():1-6. PubMed ID: 30853640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Insight into Old Bacillus Lipase: Solvent Stable Mesophilic Lipase Demonstrating Enzyme Activity towards Cold.
    Khurana J; Kumar R; Kumar A; Singh K; Singh R; Kaur J
    J Mol Microbiol Biotechnol; 2015; 25(5):340-8. PubMed ID: 26488405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of an organic solvent-tolerant bacterium Bacillus licheniformis PAL05 that is able to secrete solvent-stable lipase.
    Anbu P; Hur BK
    Biotechnol Appl Biochem; 2014; 61(5):528-34. PubMed ID: 24397298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.