These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30535844)

  • 21. Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System.
    Gulbudak H; Cannataro VL; Tuncer N; Martcheva M
    Bull Math Biol; 2017 Feb; 79(2):325-355. PubMed ID: 28032207
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Climate change: an enduring challenge for vector-borne disease prevention and control.
    Rocklöv J; Dubrow R
    Nat Immunol; 2020 May; 21(5):479-483. PubMed ID: 32313242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents.
    Caldwell JM; LaBeaud AD; Lambin EF; Stewart-Ibarra AM; Ndenga BA; Mutuku FM; Krystosik AR; Ayala EB; Anyamba A; Borbor-Cordova MJ; Damoah R; Grossi-Soyster EN; Heras FH; Ngugi HN; Ryan SJ; Shah MM; Sippy R; Mordecai EA
    Nat Commun; 2021 Feb; 12(1):1233. PubMed ID: 33623008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Basic reproduction ratio of a mosquito-borne disease in heterogeneous environment.
    Zhao H; Wang K; Wang H
    J Math Biol; 2023 Jan; 86(3):32. PubMed ID: 36695934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current Trends in Mathematical Epidemiology.
    Arino J; Watmough J
    Bull Math Biol; 2019 Nov; 81(11):4311-4312. PubMed ID: 31724112
    [No Abstract]   [Full Text] [Related]  

  • 26. The basic reproduction number of vector-borne plant virus epidemics.
    Van den Bosch F; Jeger MJ
    Virus Res; 2017 Sep; 241():196-202. PubMed ID: 28642061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamical behaviors of a vector-borne diseases model with two time delays on bipartite networks.
    Zhao R; Liu Q; Zhang H
    Math Biosci Eng; 2021 Apr; 18(4):3073-3091. PubMed ID: 34198376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Approximation methods for analyzing multiscale stochastic vector-borne epidemic models.
    Liu X; Mubayi A; Reinhold D; Zhu L
    Math Biosci; 2019 Mar; 309():42-65. PubMed ID: 30658089
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vector-borne diseases models with residence times - A Lagrangian perspective.
    Bichara D; Castillo-Chavez C
    Math Biosci; 2016 Nov; 281():128-138. PubMed ID: 27622812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of Malaria Control Measures' Effectiveness Using Multistage Vector Model.
    Kamgang JC; Thron CP
    Bull Math Biol; 2019 Nov; 81(11):4366-4411. PubMed ID: 31286347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of host extinction and vector preferences on vector-borne disease risk in phylogenetically structured host-hector communities.
    Nunn CL; Vining AQ; Chakraborty D; Reiskind MH; Young HS
    PLoS One; 2021; 16(8):e0256456. PubMed ID: 34424937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying dilution and amplification in a community of hosts for tick-borne pathogens.
    Levi T; Keesing F; Holt RD; Barfield M; Ostfeld RS
    Ecol Appl; 2016 Mar; 26(2):484-98. PubMed ID: 27209790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global dynamics of a multi-stage brucellosis model with distributed delays and indirect transmission.
    Hou Q; Qin HY
    Math Biosci Eng; 2019 Apr; 16(4):3111-3129. PubMed ID: 31137253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epidemiological Implications of Host Biodiversity and Vector Biology: Key Insights from Simple Models.
    Dobson AD; Auld SK
    Am Nat; 2016 Apr; 187(4):405-22. PubMed ID: 27028070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth of cities could boost mosquito-borne diseases.
    Pennisi E
    Science; 2020 May; 368(6492):695. PubMed ID: 32409454
    [No Abstract]   [Full Text] [Related]  

  • 37. The role of the ratio of vector and host densities in the evolution of transmission modes in vector-borne diseases. The example of sylvatic Trypanosoma cruzi.
    Pelosse P; Kribs-Zaleta CM
    J Theor Biol; 2012 Nov; 312():133-42. PubMed ID: 22892441
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling Relapsing Disease Dynamics in a Host-Vector Community.
    Johnson TL; Landguth EL; Stone EF
    PLoS Negl Trop Dis; 2016 Feb; 10(2):e0004428. PubMed ID: 26910884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the interplay between human mobility and mosquito borne diseases in urban environments.
    Massaro E; Kondor D; Ratti C
    Sci Rep; 2019 Nov; 9(1):16911. PubMed ID: 31729435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling transmission of vector-borne pathogens shows complex dynamics when vector feeding sites are limited.
    Kershenbaum A; Stone L; Ostfeld RS; Blaustein L
    PLoS One; 2012; 7(5):e36730. PubMed ID: 22590597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.