These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30535844)

  • 41. Modeling Approach Influences Dynamics of a Vector-Borne Pathogen System.
    Shaw AK; Igoe M; Power AG; Bosque-Pérez NA; Peace A
    Bull Math Biol; 2019 Jun; 81(6):2011-2028. PubMed ID: 30903591
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vector-borne diseases and the basic reproduction number: a case study of African horse sickness.
    Lord CC; Woolhouse ME; Heesterbeek JA; Mellor PS
    Med Vet Entomol; 1996 Jan; 10(1):19-28. PubMed ID: 8834738
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular and serological detection of animal and human vector-borne pathogens in the blood of dogs from Côte d'Ivoire.
    Medkour H; Laidoudi Y; Athias E; Bouam A; Dizoé S; Davoust B; Mediannikov O
    Comp Immunol Microbiol Infect Dis; 2020 Apr; 69():101412. PubMed ID: 31981798
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Time-Scale Analysis and Parameter Fitting for Vector-Borne Diseases with Spatial Dynamics.
    Sartori L; Pereira M; Oliva S
    Bull Math Biol; 2022 Sep; 84(11):124. PubMed ID: 36121515
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mathematical analysis of a power-law form time dependent vector-borne disease transmission model.
    Sardar T; Saha B
    Math Biosci; 2017 Jun; 288():109-123. PubMed ID: 28274854
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mapping Thermal Physiology of Vector-Borne Diseases in a Changing Climate: Shifts in Geographic and Demographic Risk of Suitability.
    Ryan SJ
    Curr Environ Health Rep; 2020 Dec; 7(4):415-423. PubMed ID: 32902817
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rift Valley fever in northern Senegal: A modelling approach to analyse the processes underlying virus circulation recurrence.
    Durand B; Lo Modou M; Tran A; Ba A; Sow F; Belkhiria J; Fall AG; Biteye B; Grosbois V; Chevalier V
    PLoS Negl Trop Dis; 2020 Jun; 14(6):e0008009. PubMed ID: 32479505
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of heterogeneity on the invasion probability of mosquito-borne diseases in multi-host models.
    Bolzoni L; Pugliese A; Rosà R
    J Theor Biol; 2015 Jul; 377():25-35. PubMed ID: 25886821
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preventing vector-borne diseases at major sport events: Addressing the challenges for FIFA 22 in Qatar.
    Schaffner F; Bansal D; Al-Thani MHJ; Al-Romaihi H; Farag EABA
    PLoS Negl Trop Dis; 2021 Mar; 15(3):e0009135. PubMed ID: 33705399
    [No Abstract]   [Full Text] [Related]  

  • 50. Implicit versus explicit vector management strategies in models for vector-borne disease epidemiology.
    Demers J; Robertson SL; Bewick S; Fagan WF
    J Math Biol; 2022 May; 84(6):48. PubMed ID: 35508555
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combatting the Increasing Threat of Vector-Borne Disease in the United States with a National Vector-Borne Disease Prevention and Control System.
    Petersen LR; Beard CB; Visser SN
    Am J Trop Med Hyg; 2019 Feb; 100(2):242-245. PubMed ID: 30499427
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A climate-based malaria model with the use of bed nets.
    Wang X; Zhao XQ
    J Math Biol; 2018 Jul; 77(1):1-25. PubMed ID: 28965238
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Global stability of an age-structured cholera model.
    Yang J; Qiu Z; Li XZ
    Math Biosci Eng; 2014 Jun; 11(3):641-65. PubMed ID: 24506555
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatial spread of infectious diseases with conditional vector preferences.
    Hamelin FM; Hilker FM; Dumont Y
    J Math Biol; 2023 Aug; 87(2):38. PubMed ID: 37537411
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transmission dynamics for vector-borne diseases in a patchy environment.
    Xiao Y; Zou X
    J Math Biol; 2014 Jul; 69(1):113-46. PubMed ID: 23732558
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modelling coupled within host and population dynamics of [Formula: see text] and [Formula: see text] HIV infection.
    Manda EC; Chirove F
    J Math Biol; 2018 Apr; 76(5):1123-1158. PubMed ID: 28762130
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analytic calculation of finite-population reproductive numbers for direct- and vector-transmitted diseases with homogeneous mixing.
    Keegan L; Dushoff J
    Bull Math Biol; 2014 May; 76(5):1143-54. PubMed ID: 24756856
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generality of endemic prevalence formulae.
    Clancy D
    Math Biosci; 2015 Nov; 269():30-6. PubMed ID: 26321688
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A reaction-diffusion malaria model with seasonality and incubation period.
    Bai Z; Peng R; Zhao XQ
    J Math Biol; 2018 Jul; 77(1):201-228. PubMed ID: 29188365
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Climate change and vector-borne diseases. From knowledge to action].
    Bermúdez-Tamayo C; García Mochón L; Ruiz Azarola A; Lacasaña M
    Gac Sanit; 2023; 37():102271. PubMed ID: 36427389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.