BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 30536173)

  • 21. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins.
    Schaer DJ; Buehler PW; Alayash AI; Belcher JD; Vercellotti GM
    Blood; 2013 Feb; 121(8):1276-84. PubMed ID: 23264591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation and Detection of Highly Oxidized Hemoglobin Forms in Biological Fluids during Hemolytic Conditions.
    Nyakundi BB; Erdei J; Tóth A; Balogh E; Nagy A; Nagy B; Novák L; Bognár L; Paragh G; Kappelmayer J; Jeney V
    Oxid Med Cell Longev; 2020; 2020():8929020. PubMed ID: 32377310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inflammasomes in Tissue Damages and Immune Disorders After Trauma.
    Bortolotti P; Faure E; Kipnis E
    Front Immunol; 2018; 9():1900. PubMed ID: 30166988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Haptoglobin Therapeutics and Compartmentalization of Cell-Free Hemoglobin Toxicity.
    Buehler PW; Humar R; Schaer DJ
    Trends Mol Med; 2020 Jul; 26(7):683-697. PubMed ID: 32589936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Damage Associated Molecular Pattern Molecules (DAMPs) in Aneurysmal Subarachnoid Hemorrhage (aSAH).
    Chaudhry SR; Hafez A; Rezai Jahromi B; Kinfe TM; Lamprecht A; Niemelä M; Muhammad S
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30011792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hemolysis, free hemoglobin toxicity, and scavenger protein therapeutics.
    Vallelian F; Buehler PW; Schaer DJ
    Blood; 2022 Oct; 140(17):1837-1844. PubMed ID: 35660854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Red blood cell, hemoglobin and heme in the progression of atherosclerosis.
    Jeney V; Balla G; Balla J
    Front Physiol; 2014; 5():379. PubMed ID: 25324785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunothrombotic Activity of Damage-Associated Molecular Patterns and Extracellular Vesicles in Secondary Organ Failure Induced by Trauma and Sterile Insults.
    Eppensteiner J; Davis RP; Barbas AS; Kwun J; Lee J
    Front Immunol; 2018; 9():190. PubMed ID: 29472928
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extravascular red blood cells and hemoglobin promote tumor growth and therapeutic resistance as endogenous danger signals.
    Yin T; He S; Liu X; Jiang W; Ye T; Lin Z; Sang Y; Su C; Wan Y; Shen G; Ma X; Yu M; Guo F; Liu Y; Li L; Hu Q; Wang Y; Wei Y
    J Immunol; 2015 Jan; 194(1):429-37. PubMed ID: 25429070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Red blood cell ATP release correlates with red blood cell hemolysis.
    Ferguson BS; Neidert LE; Rogatzki MJ; Lohse KR; Gladden LB; Kluess HA
    Am J Physiol Cell Physiol; 2021 Nov; 321(5):C761-C769. PubMed ID: 34495762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Damage-associated molecular patterns in cancer: a double-edged sword.
    Hernandez C; Huebener P; Schwabe RF
    Oncogene; 2016 Nov; 35(46):5931-5941. PubMed ID: 27086930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Release mechanisms of major DAMPs.
    Murao A; Aziz M; Wang H; Brenner M; Wang P
    Apoptosis; 2021 Apr; 26(3-4):152-162. PubMed ID: 33713214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A perspective on the role of extracellular hemoglobin on the innate immune system.
    Lee SK; Ding JL
    DNA Cell Biol; 2013 Feb; 32(2):36-40. PubMed ID: 23249270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Impact of Surgery and Stored Red Blood Cell Transfusions on Nitric Oxide Homeostasis.
    Nagababu E; Scott AV; Johnson DJ; Goyal A; Lipsitz JA; Barodka VM; Berkowitz DE; Frank SM
    Anesth Analg; 2016 Aug; 123(2):274-82. PubMed ID: 27308950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Danger-Associated Molecular Patterns (DAMPs): the Derivatives and Triggers of Inflammation.
    Patel S
    Curr Allergy Asthma Rep; 2018 Sep; 18(11):63. PubMed ID: 30267163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of RBC destruction in vascular regions with high turbulence on atherosclerosis.
    Olgun A; Akman S; Erbil MK
    Med Hypotheses; 2004; 63(2):283-4. PubMed ID: 15236792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemopexin as an Inhibitor of Hemolysis-Induced Complement Activation.
    Poillerat V; Gentinetta T; Leon J; Wassmer A; Edler M; Torset C; Luo D; Tuffin G; Roumenina LT
    Front Immunol; 2020; 11():1684. PubMed ID: 32849588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative stress resulting from hemolysis and formation of catalytically active hemoglobin: protective strategies.
    Ziouzenkova O; Asatryan L; Sevanian A
    Int J Clin Pharmacol Ther; 1999 Mar; 37(3):125-32. PubMed ID: 10190760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox Activation of Mitochondrial DAMPs and the Metabolic Consequences for Development of Autoimmunity.
    Koenig A; Buskiewicz-Koenig IA
    Antioxid Redox Signal; 2022 Mar; 36(7-9):441-461. PubMed ID: 35352943
    [No Abstract]   [Full Text] [Related]  

  • 40. Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair.
    De Lorenzo G; Ferrari S; Cervone F; Okun E
    Trends Immunol; 2018 Nov; 39(11):937-950. PubMed ID: 30293747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.