BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 30536173)

  • 61. The reaction of hydrogen peroxide with hemoglobin induces extensive alpha-globin crosslinking and impairs the interaction of hemoglobin with endogenous scavenger pathways.
    Vallelian F; Pimenova T; Pereira CP; Abraham B; Mikolajczyk MG; Schoedon G; Zenobi R; Alayash AI; Buehler PW; Schaer DJ
    Free Radic Biol Med; 2008 Oct; 45(8):1150-8. PubMed ID: 18708138
    [TBL] [Abstract][Full Text] [Related]  

  • 62. New Insights into Hemopexin-Binding to Hemin and Hemoglobin.
    Lechuga GC; Napoleão-Pêgo P; Morel CM; Provance DW; De-Simone SG
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409149
    [TBL] [Abstract][Full Text] [Related]  

  • 63. NMI and IFP35 serve as proinflammatory DAMPs during cellular infection and injury.
    Xiahou Z; Wang X; Shen J; Zhu X; Xu F; Hu R; Guo D; Li H; Tian Y; Liu Y; Liang H
    Nat Commun; 2017 Oct; 8(1):950. PubMed ID: 29038465
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Storage lesion: role of red blood cell breakdown.
    Kim-Shapiro DB; Lee J; Gladwin MT
    Transfusion; 2011 Apr; 51(4):844-51. PubMed ID: 21496045
    [TBL] [Abstract][Full Text] [Related]  

  • 65. CD163-expressing monocytes constitute an endotoxin-sensitive Hb clearance compartment within the vascular system.
    Schaer CA; Vallelian F; Imhof A; Schoedon G; Schaer DJ
    J Leukoc Biol; 2007 Jul; 82(1):106-10. PubMed ID: 17460152
    [TBL] [Abstract][Full Text] [Related]  

  • 66. DANGER IN THE INTENSIVE CARE UNIT: DAMPS IN CRITICALLY ILL PATIENTS.
    Timmermans K; Kox M; Scheffer GJ; Pickkers P
    Shock; 2016 Feb; 45(2):108-16. PubMed ID: 26513703
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Elevated free hemoglobin and decreased haptoglobin levels are associated with adverse clinical outcomes, unfavorable physiologic measures, and altered inflammatory markers in pediatric cardiac surgery patients.
    Cholette JM; Pietropaoli AP; Henrichs KF; Alfieris GM; Powers KS; Gensini F; Rubenstein JS; Sweeney D; Phipps R; Spinelli SL; Refaai MA; Eaton MP; Blumberg N
    Transfusion; 2018 Jul; 58(7):1631-1639. PubMed ID: 29603246
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multiscale modeling of hemolysis during microfiltration.
    Nikfar M; Razizadeh M; Paul R; Liu Y
    Microfluid Nanofluidics; 2020 May; 24(5):. PubMed ID: 33235552
    [TBL] [Abstract][Full Text] [Related]  

  • 69. STUDIES ON HAPTOGLOBIN AND HAEMOPEXIN IN THE PLASMA OF CATTLE.
    BREMNER KC
    Aust J Exp Biol Med Sci; 1964 Dec; 42():643-56. PubMed ID: 14244703
    [No Abstract]   [Full Text] [Related]  

  • 70. What Is Next in This "Age" of Heme-Driven Pathology and Protection by Hemopexin? An Update and Links with Iron.
    Montecinos L; Eskew JD; Smith A
    Pharmaceuticals (Basel); 2019 Sep; 12(4):. PubMed ID: 31554244
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Heme-mediated cell activation: the inflammatory puzzle of sickle cell anemia.
    Guarda CCD; Santiago RP; Fiuza LM; Aleluia MM; Ferreira JRD; Figueiredo CVB; Yahouedehou SCMA; Oliveira RM; Lyra IM; Gonçalves MS
    Expert Rev Hematol; 2017 Jun; 10(6):533-541. PubMed ID: 28482712
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Haptoglobin Preserves Vascular Nitric Oxide Signaling during Hemolysis.
    Schaer CA; Deuel JW; Schildknecht D; Mahmoudi L; Garcia-Rubio I; Owczarek C; Schauer S; Kissner R; Banerjee U; Palmer AF; Spahn DR; Irwin DC; Vallelian F; Buehler PW; Schaer DJ
    Am J Respir Crit Care Med; 2016 May; 193(10):1111-22. PubMed ID: 26694989
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mechanism of oxidative damage to fish red blood cells by ozone.
    Fukunaga K; Nakazono N; Suzuki T; Takama K
    IUBMB Life; 1999 Dec; 48(6):631-4. PubMed ID: 10683769
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Danger-associated molecular patterns in Alzheimer's disease.
    Venegas C; Heneka MT
    J Leukoc Biol; 2017 Jan; 101(1):87-98. PubMed ID: 28049142
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mechanisms of hemolysis-associated platelet activation.
    Helms CC; Marvel M; Zhao W; Stahle M; Vest R; Kato GJ; Lee JS; Christ G; Gladwin MT; Hantgan RR; Kim-Shapiro DB
    J Thromb Haemost; 2013 Dec; 11(12):2148-54. PubMed ID: 24119131
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system.
    Martin SJ
    FEBS J; 2016 Jul; 283(14):2599-615. PubMed ID: 27273805
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Damage-Associated Molecular Patterns and Their Signaling Pathways in Primary Blast Lung Injury: New Research Progress and Future Directions.
    Li N; Geng C; Hou S; Fan H; Gong Y
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32878118
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Linear relationship between cytoplasm resistance and hemoglobin in red blood cell hemolysis by electrical impedance spectroscopy & eight-parameter equivalent circuit.
    Tran AK; Sapkota A; Wen J; Li J; Takei M
    Biosens Bioelectron; 2018 Nov; 119():103-109. PubMed ID: 30118948
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Exploring how plasma- and muscle-related parameters affect trout hemolysis as a route to prevent hemoglobin-mediated lipid oxidation of fish muscle.
    Ghirmai S; Wu H; Axelsson M; Matsuhira T; Sakai H; Undeland I
    Sci Rep; 2022 Aug; 12(1):13446. PubMed ID: 35927386
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The effects of red blood cell preparation method on in vitro markers of red blood cell aging and inflammatory response.
    Radwanski K; Garraud O; Cognasse F; Hamzeh-Cognasse H; Payrat JM; Min K
    Transfusion; 2013 Dec; 53(12):3128-38. PubMed ID: 23461802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.