These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 30536211)
1. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations. Qiu TY; Zhao LG; Song M Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211 [TBL] [Abstract][Full Text] [Related]
2. A computational study of crimping and expansion of bioresorbable polymeric stents. Qiu TY; Song M; Zhao LG Mech Time Depend Mater; 2018; 22(2):273-290. PubMed ID: 29962898 [TBL] [Abstract][Full Text] [Related]
3. Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery--finite element simulation. Schiavone A; Zhao LG; Abdel-Wahab AA Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():479-88. PubMed ID: 25063145 [TBL] [Abstract][Full Text] [Related]
4. Finite element analysis and stent design: Reduction of dogboning. De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746 [TBL] [Abstract][Full Text] [Related]
5. Design optimization of stent and its dilatation balloon using kriging surrogate model. Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895 [TBL] [Abstract][Full Text] [Related]
6. Computational analysis of mechanical stress-strain interaction of a bioresorbable scaffold with blood vessel. Schiavone A; Abunassar C; Hossainy S; Zhao LG J Biomech; 2016 Sep; 49(13):2677-2683. PubMed ID: 27318369 [TBL] [Abstract][Full Text] [Related]
7. Finite element evaluation of artery damage in deployment of polymeric stent with pre- and post-dilation. He R; Zhao LG; Silberschmidt VV; Liu Y; Vogt F Biomech Model Mechanobiol; 2020 Feb; 19(1):47-60. PubMed ID: 31317295 [TBL] [Abstract][Full Text] [Related]
8. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent. Debusschere N; Segers P; Dubruel P; Verhegghe B; De Beule M J Biomech; 2015 Jul; 48(10):2012-8. PubMed ID: 25907549 [TBL] [Abstract][Full Text] [Related]
9. Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength, recoil, foreshortening, and dogboning. Kumar A; Bhatnagar N Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):245-259. PubMed ID: 33021106 [TBL] [Abstract][Full Text] [Related]
10. Experimental and Numerical Simulation of Biodegradable Stents with Different Strut Geometries. Chen C; Xiong Y; Jiang W; Wang Y; Wang Z; Chen Y Cardiovasc Eng Technol; 2020 Feb; 11(1):36-46. PubMed ID: 31664685 [TBL] [Abstract][Full Text] [Related]
11. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses. Dordoni E; Meoli A; Wu W; Dubini G; Migliavacca F; Pennati G; Petrini L Med Eng Phys; 2014 Jul; 36(7):842-9. PubMed ID: 24721457 [TBL] [Abstract][Full Text] [Related]
12. Mechanical behavior of coronary stents investigated through the finite element method. Migliavacca F; Petrini L; Colombo M; Auricchio F; Pietrabissa R J Biomech; 2002 Jun; 35(6):803-11. PubMed ID: 12021000 [TBL] [Abstract][Full Text] [Related]
13. Computational Analysis of the Utilisation of the Shape Memory Effect and Balloon Expansion in Fully Polymeric Stent Deployment. Bobel AC; McHugh PE Cardiovasc Eng Technol; 2018 Mar; 9(1):60-72. PubMed ID: 29243163 [TBL] [Abstract][Full Text] [Related]
14. Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion. Lim D; Cho SK; Park WP; Kristensson A; Ko JY; Al-Hassani ST; Kim HS Ann Biomed Eng; 2008 Jul; 36(7):1118-29. PubMed ID: 18437572 [TBL] [Abstract][Full Text] [Related]
15. Characterizing the expansive deformation of a bioresorbable polymer fiber stent. Welch T; Eberhart RC; Chuong CJ Ann Biomed Eng; 2008 May; 36(5):742-51. PubMed ID: 18264765 [TBL] [Abstract][Full Text] [Related]
16. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent. Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483 [TBL] [Abstract][Full Text] [Related]
17. Future Balloon-Expandable Stents: High or Low-Strength Materials? Khalilimeybodi A; Alishzadeh Khoei A; Sharif-Kashani B Cardiovasc Eng Technol; 2020 Apr; 11(2):188-204. PubMed ID: 31836964 [TBL] [Abstract][Full Text] [Related]
18. Optimizing through computational modeling to reduce dogboning of functionally graded coronary stent material. Khosravi A; Akbari A; Bahreinizad H; Salimi Bani M; Karimi A J Mater Sci Mater Med; 2017 Aug; 28(9):142. PubMed ID: 28819891 [TBL] [Abstract][Full Text] [Related]
19. Finite element methods to analyze helical stent expansion. Paryab N; Cronin DS; Lee-Sullivan P Int J Numer Method Biomed Eng; 2014 Mar; 30(3):339-52. PubMed ID: 24123985 [TBL] [Abstract][Full Text] [Related]
20. Development of asymmetric stent for treatment of eccentric plaque. Syaifudin A; Takeda R; Sasaki K Biomed Mater Eng; 2018; 29(3):299-317. PubMed ID: 29578470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]