These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30536228)

  • 1. Specific Systems for Evaluation.
    Slavcev RA; Sum CH; St Jean J; Huh H; Nafissi N
    Exp Suppl; 2018; 110():99-123. PubMed ID: 30536228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of BRET to Study Protein-Protein Interactions In Vitro and In Vivo.
    Dimri S; Basu S; De A
    Methods Mol Biol; 2016; 1443():57-78. PubMed ID: 27246334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reporter-Based BRET Sensors for Measuring Biological Functions In Vivo.
    Rathod M; Mal A; De A
    Methods Mol Biol; 2018; 1790():51-74. PubMed ID: 29858783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.
    Branchini B
    Methods Mol Biol; 2016; 1461():101-15. PubMed ID: 27424898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved fluorescent protein-based expression reporter system that utilizes bioluminescence resonance energy transfer and peptide-assisted complementation.
    Kakizuka T; Takai A; Yoshizawa K; Okada Y; Watanabe TM
    Chem Commun (Camb); 2020 Mar; 56(25):3625-3628. PubMed ID: 32104841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria.
    Cui B; Wang Y; Song Y; Wang T; Li C; Wei Y; Luo ZQ; Shen X
    mBio; 2014 May; 5(3):e01050-14. PubMed ID: 24846380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusion of Aequorea victoria GFP and aequorin provides their Ca(2+)-induced interaction that results in red shift of GFP absorption and efficient bioluminescence energy transfer.
    Gorokhovatsky AY; Marchenkov VV; Rudenko NV; Ivashina TV; Ksenzenko VN; Burkhardt N; Semisotnov GV; Vinokurov LM; Alakhov YB
    Biochem Biophys Res Commun; 2004 Jul; 320(3):703-11. PubMed ID: 15240105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The new era of bioluminescence resonance energy transfer technology.
    De A
    Curr Pharm Biotechnol; 2011 Apr; 12(4):558-68. PubMed ID: 21342101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous assay for biotin based on Aequorea victoria bioluminescence resonance energy transfer system.
    Gorokhovatsky AY; Rudenko NV; Marchenkov VV; Skosyrev VS; Arzhanov MA; Burkhardt N; Zakharov MV; Semisotnov GV; Vinokurov LM; Alakhov YB
    Anal Biochem; 2003 Feb; 313(1):68-75. PubMed ID: 12576060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of a homogeneous noncompetitive immunoassay based on bioluminescence resonance energy transfer.
    Arai R; Nakagawa H; Tsumoto K; Mahoney W; Kumagai I; Ueda H; Nagamune T
    Anal Biochem; 2001 Feb; 289(1):77-81. PubMed ID: 11161297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and characterisation of a compact device for rapid real-time-on-chip detection of thrombin activity in human serum using bioluminescence resonance energy transfer (BRET).
    Weihs F; Gel M; Wang J; Anderson A; Trowell S; Dacres H
    Biosens Bioelectron; 2020 Jun; 158():112162. PubMed ID: 32275213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo detection of protein-protein interaction in plant cells using BRET.
    Subramanian C; Xu Y; Johnson CH; von Arnim AG
    Methods Mol Biol; 2004; 284():271-86. PubMed ID: 15173623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicolor Bioluminescence Imaging of Subcellular Structures and Multicolor Calcium Imaging in Single Living Cells.
    Suzuki K; Hossain MN; Matsuda T; Nagai T
    Methods Mol Biol; 2021; 2350():229-237. PubMed ID: 34331288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reaction mechanism of calcium-activated photoprotein bioluminescence.
    Hirano T
    Curr Pharm Biotechnol; 2012 Nov; 13(14):2551-61. PubMed ID: 22039804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoproteins as luminescent labels in binding assays.
    Lewis JC; Daunert S
    Fresenius J Anal Chem; 2000; 366(6-7):760-8. PubMed ID: 11225787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoluciferase signal brightness using furimazine substrates opens bioluminescence resonance energy transfer to widefield microscopy.
    Kim J; Grailhe R
    Cytometry A; 2016 Aug; 89(8):742-6. PubMed ID: 27144967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring protein-protein interactions in living cells by bioluminescence resonance energy transfer (BRET).
    Hamdan FF; Percherancier Y; Breton B; Bouvier M
    Curr Protoc Neurosci; 2006 Feb; Chapter 5():Unit 5.23. PubMed ID: 18428639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The BRET technology and its application to screening assays.
    Bacart J; Corbel C; Jockers R; Bach S; Couturier C
    Biotechnol J; 2008 Mar; 3(3):311-24. PubMed ID: 18228541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel multistep BRET-FRET energy transfer using nanoconjugates of firefly proteins, quantum dots, and red fluorescent proteins.
    Alam R; Zylstra J; Fontaine DM; Branchini BR; Maye MM
    Nanoscale; 2013 Jun; 5(12):5303-6. PubMed ID: 23685756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of enhanced Renilla luciferase and fluorescent protein variants on the Förster distance of Bioluminescence resonance energy transfer (BRET).
    Dacres H; Michie M; Wang J; Pfleger KD; Trowell SC
    Biochem Biophys Res Commun; 2012 Aug; 425(3):625-9. PubMed ID: 22877756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.