These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 30536427)

  • 1. SUSAN: segment unannotated image structure using adversarial network.
    Liu F
    Magn Reson Med; 2019 May; 81(5):3330-3345. PubMed ID: 30536427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging.
    Liu F; Zhou Z; Jang H; Samsonov A; Zhao G; Kijowski R
    Magn Reson Med; 2018 Apr; 79(4):2379-2391. PubMed ID: 28733975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep convolutional neural network for segmentation of knee joint anatomy.
    Zhou Z; Zhao G; Kijowski R; Liu F
    Magn Reson Med; 2018 Dec; 80(6):2759-2770. PubMed ID: 29774599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.
    Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD
    Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks.
    Gaj S; Yang M; Nakamura K; Li X
    Magn Reson Med; 2020 Jul; 84(1):437-449. PubMed ID: 31793071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance rapid MR parameter mapping using model-based deep adversarial learning.
    Liu F; Kijowski R; Feng L; El Fakhri G
    Magn Reson Imaging; 2020 Dec; 74():152-160. PubMed ID: 32980503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry.
    Norman B; Pedoia V; Majumdar S
    Radiology; 2018 Jul; 288(1):177-185. PubMed ID: 29584598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CycleSGAN: A cycle-consistent and semantics-preserving generative adversarial network for unpaired MR-to-CT image synthesis.
    Wang R; Heimann AF; Tannast M; Zheng G
    Comput Med Imaging Graph; 2024 Oct; 117():102431. PubMed ID: 39243464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A generative adversarial network-based unsupervised domain adaptation method for magnetic resonance image segmentation].
    Sun Y; Liu J; Sun Z; Han J; Yu N
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Dec; 39(6):1181-1188. PubMed ID: 36575088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain-specific data augmentation for segmenting MR images of fatty infiltrated human thighs with neural networks.
    Gadermayr M; Li K; Müller M; Truhn D; Krämer N; Merhof D; Gess B
    J Magn Reson Imaging; 2019 Jun; 49(6):1676-1683. PubMed ID: 30623506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knee cartilage segmentation and thickness computation from ultrasound images.
    Faisal A; Ng SC; Goh SL; Lai KW
    Med Biol Eng Comput; 2018 Apr; 56(4):657-669. PubMed ID: 28849317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks.
    Pröve PL; Jopp-van Well E; Stanczus B; Morlock MM; Herrmann J; Groth M; Säring D; Auf der Mauer M
    Int J Legal Med; 2019 Jul; 133(4):1191-1205. PubMed ID: 30392059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reciprocal learning strategy for semisupervised medical image segmentation.
    Zeng X; Huang R; Zhong Y; Xu Z; Liu Z; Wang Y
    Med Phys; 2023 Jan; 50(1):163-177. PubMed ID: 35950367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets.
    Jiang J; Hu YC; Tyagi N; Zhang P; Rimner A; Deasy JO; Veeraraghavan H
    Med Phys; 2019 Oct; 46(10):4392-4404. PubMed ID: 31274206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images.
    Neubert A; Yang Z; Engstrom C; Xia Y; Strudwick MW; Chandra SS; Fripp J; Crozier S
    Med Phys; 2016 Oct; 43(10):5370. PubMed ID: 27782728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast interactive medical image segmentation with weakly supervised deep learning method.
    Girum KB; Créhange G; Hussain R; Lalande A
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1437-1444. PubMed ID: 32653985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hippocampal subfields segmentation in brain MR images using generative adversarial networks.
    Shi Y; Cheng K; Liu Z
    Biomed Eng Online; 2019 Jan; 18(1):5. PubMed ID: 30665408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.