BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 30536442)

  • 1. Dosimetric features-driven machine learning model for DVH prediction in VMAT treatment planning.
    Ma M; Kovalchuk N; Buyyounouski MK; Xing L; Yang Y
    Med Phys; 2019 Feb; 46(2):857-867. PubMed ID: 30536442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of dose-volume histogram prediction for organ-at risk and planning target volume based on machine learning.
    Jiao SX; Wang ML; Chen LX; Liu XW
    Sci Rep; 2021 Feb; 11(1):3117. PubMed ID: 33542427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting dose-volume histograms for organs-at-risk in IMRT planning.
    Appenzoller LM; Michalski JM; Thorstad WL; Mutic S; Moore KL
    Med Phys; 2012 Dec; 39(12):7446-61. PubMed ID: 23231294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporating dosimetric features into the prediction of 3D VMAT dose distributions using deep convolutional neural network.
    Ma M; Kovalchuk N; Buyyounouski MK; Xing L; Yang Y
    Phys Med Biol; 2019 Jun; 64(12):125017. PubMed ID: 31082805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans.
    Yuan L; Ge Y; Lee WR; Yin FF; Kirkpatrick JP; Wu QJ
    Med Phys; 2012 Nov; 39(11):6868-78. PubMed ID: 23127079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved distance-to-dose correlation for predicting bladder and rectum dose-volumes in knowledge-based VMAT planning for prostate cancer.
    Wall PDH; Carver RL; Fontenot JD
    Phys Med Biol; 2018 Jan; 63(1):015035. PubMed ID: 29131812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for a priori estimation of best feasible DVH for organs-at-risk: Validation for head and neck VMAT planning.
    Ahmed S; Nelms B; Gintz D; Caudell J; Zhang G; Moros EG; Feygelman V
    Med Phys; 2017 Oct; 44(10):5486-5497. PubMed ID: 28777469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of multi-criteria optimization (MCO) parameter efficiency in volumetric modulated arc therapy (VMAT) treatment planning using machine learning (ML).
    Harrer C; Ullrich W; Wilkens JJ
    Phys Med; 2021 Jan; 81():102-113. PubMed ID: 33445122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Efficient Training, Refinement, and Validation of a Knowledge-based Planning Quality-Control System for Radiation Therapy Clinical Trials.
    Li N; Carmona R; Sirak I; Kasaova L; Followill D; Michalski J; Bosch W; Straube W; Mell LK; Moore KL
    Int J Radiat Oncol Biol Phys; 2017 Jan; 97(1):164-172. PubMed ID: 27979445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative comparison of automatic and manual IMRT optimization for prostate cancer: the benefits of DVH prediction.
    Yang Y; Li T; Yuan L; Ge Y; Yin FF; Lee WR; Wu QJ
    J Appl Clin Med Phys; 2015 Mar; 16(2):5204. PubMed ID: 26103191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of optimum minimum segment width on VMAT plan quality and deliverability: A comprehensive dosimetric and clinical evaluation using DVH analysis.
    Yoosuf AM; Ahmad MB; AlShehri S; Alhadab A; Alqathami M
    J Appl Clin Med Phys; 2021 Nov; 22(11):29-40. PubMed ID: 34592787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knowledge-based prediction of plan quality metrics in intracranial stereotactic radiosurgery.
    Shiraishi S; Tan J; Olsen LA; Moore KL
    Med Phys; 2015 Feb; 42(2):908. PubMed ID: 25652503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of dosimetric accuracy for VMAT plans using plan complexity parameters via machine learning.
    Ono T; Hirashima H; Iramina H; Mukumoto N; Miyabe Y; Nakamura M; Mizowaki T
    Med Phys; 2019 Sep; 46(9):3823-3832. PubMed ID: 31222758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knowledge-based planning using both the predicted DVH of organ-at risk and planning target volume.
    Jiao SX; Wang ML; Chen LX; Liu XW
    Med Eng Phys; 2022 Dec; 110():103803. PubMed ID: 35461772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy.
    Pokhrel D; Sood S; Badkul R; Jiang H; McClinton C; Lominska C; Kumar P; Wang F
    J Appl Clin Med Phys; 2016 May; 17(3):277-293. PubMed ID: 27167284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose Prediction Models Based on Geometric and Plan Optimization Parameter for Adjuvant Radiotherapy Planning Design in Cervical Cancer Radiotherapy.
    Tang H; Chen Y; Jiang J; Li K; Zeng J; Hu Z; Yin R
    J Healthc Eng; 2021; 2021():7026098. PubMed ID: 34804459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of PlanIQ Feasibility DVH for head and neck treatment planning.
    Fried DV; Chera BS; Das SK
    J Appl Clin Med Phys; 2017 Sep; 18(5):245-250. PubMed ID: 28857470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approach and assessment of automated stereotactic radiotherapy planning for early stage non-small-cell lung cancer.
    Bai X; Shan G; Chen M; Wang B
    Biomed Eng Online; 2019 Oct; 18(1):101. PubMed ID: 31619263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of VMAT Planning Strategies for Prostate Patients with Bilateral Hip Prosthesis.
    To D; Xhaferllari I; Liu M; Liang J; Knill C; Nandalur S; Gustafson G; Lack D
    Technol Cancer Res Treat; 2021; 20():15330338211038490. PubMed ID: 34490809
    [No Abstract]   [Full Text] [Related]  

  • 20. Utilizing knowledge from prior plans in the evaluation of quality assurance.
    Stanhope C; Wu QJ; Yuan L; Liu J; Hood R; Yin FF; Adamson J
    Phys Med Biol; 2015 Jun; 60(12):4873-91. PubMed ID: 26056801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.