These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30536610)

  • 1. Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone.
    Entezari A; Roohani I; Li G; Dunstan CR; Rognon P; Li Q; Jiang X; Zreiqat H
    Adv Healthc Mater; 2019 Jan; 8(1):e1801353. PubMed ID: 30536610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures.
    Lim HK; Hong SJ; Byeon SJ; Chung SM; On SW; Yang BE; Lee JH; Byun SH
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32971749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteogenesis of 3D printed macro-pore size biphasic calcium phosphate scaffold in rabbit calvaria.
    Liu F; Liu Y; Li X; Wang X; Li D; Chung S; Chen C; Lee IS
    J Biomater Appl; 2019 Apr; 33(9):1168-1177. PubMed ID: 30665312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Plotted Beta-Tricalcium Phosphate Scaffolds with Smaller Pore Sizes Improve In Vivo Bone Regeneration and Biomechanical Properties in a Critical-Sized Calvarial Defect Rat Model.
    Diao J; OuYang J; Deng T; Liu X; Feng Y; Zhao N; Mao C; Wang Y
    Adv Healthc Mater; 2018 Sep; 7(17):e1800441. PubMed ID: 30044555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printed bioceramic scaffolds: Adjusting pore dimension is beneficial for mandibular bone defects repair.
    Qin H; Wei Y; Han J; Jiang X; Yang X; Wu Y; Gou Z; Chen L
    J Tissue Eng Regen Med; 2022 Apr; 16(4):409-421. PubMed ID: 35156316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofabrication of SDF-1 Functionalized 3D-Printed Cell-Free Scaffolds for Bone Tissue Regeneration.
    Lauer A; Wolf P; Mehler D; Götz H; Rüzgar M; Baranowski A; Henrich D; Rommens PM; Ritz U
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32245268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Form and functional repair of long bone using 3D-printed bioactive scaffolds.
    Tovar N; Witek L; Atria P; Sobieraj M; Bowers M; Lopez CD; Cronstein BN; Coelho PG
    J Tissue Eng Regen Med; 2018 Sep; 12(9):1986-1999. PubMed ID: 30044544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model.
    Roosa SM; Kemppainen JM; Moffitt EN; Krebsbach PH; Hollister SJ
    J Biomed Mater Res A; 2010 Jan; 92(1):359-68. PubMed ID: 19189391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.
    Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair of Critical-Sized Long Bone Defects Using Dipyridamole-Augmented 3D-Printed Bioactive Ceramic Scaffolds.
    Witek L; Alifarag AM; Tovar N; Lopez CD; Cronstein BN; Rodriguez ED; Coelho PG
    J Orthop Res; 2019 Dec; 37(12):2499-2507. PubMed ID: 31334868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model.
    Lee SH; Lee KG; Hwang JH; Cho YS; Lee KS; Jeong HJ; Park SH; Park Y; Cho YS; Lee BK
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():949-959. PubMed ID: 30813102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orthotopic Bone Regeneration within 3D Printed Bioceramic Scaffolds with Region-Dependent Porosity Gradients in an Equine Model.
    Diloksumpan P; Bolaños RV; Cokelaere S; Pouran B; de Grauw J; van Rijen M; van Weeren R; Levato R; Malda J
    Adv Healthc Mater; 2020 May; 9(10):e1901807. PubMed ID: 32324336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.
    Pati F; Song TH; Rijal G; Jang J; Kim SW; Cho DW
    Biomaterials; 2015 Jan; 37():230-41. PubMed ID: 25453953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Bone Regeneration in Rabbit Bone Defects Using 3D Printed Composite Scaffolds Functionalized with Osteoinductive Factors.
    Teotia AK; Dienel K; Qayoom I; van Bochove B; Gupta S; Partanen J; Seppälä J; Kumar A
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48340-48356. PubMed ID: 32993288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.