These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 30536610)
1. Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone. Entezari A; Roohani I; Li G; Dunstan CR; Rognon P; Li Q; Jiang X; Zreiqat H Adv Healthc Mater; 2019 Jan; 8(1):e1801353. PubMed ID: 30536610 [TBL] [Abstract][Full Text] [Related]
2. Unraveling the influence of channel size and shape in 3D printed ceramic scaffolds on osteogenesis. Entezari A; Wu Q; Mirkhalaf M; Lu Z; Roohani I; Li Q; Dunstan CR; Jiang X; Zreiqat H Acta Biomater; 2024 May; 180():115-127. PubMed ID: 38642786 [TBL] [Abstract][Full Text] [Related]
3. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo. Kim JA; Lim J; Naren R; Yun HS; Park EK Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019 [TBL] [Abstract][Full Text] [Related]
5. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect. Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077 [TBL] [Abstract][Full Text] [Related]
6. Osteogenesis of 3D printed macro-pore size biphasic calcium phosphate scaffold in rabbit calvaria. Liu F; Liu Y; Li X; Wang X; Li D; Chung S; Chen C; Lee IS J Biomater Appl; 2019 Apr; 33(9):1168-1177. PubMed ID: 30665312 [TBL] [Abstract][Full Text] [Related]
7. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures. Lim HK; Hong SJ; Byeon SJ; Chung SM; On SW; Yang BE; Lee JH; Byun SH Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32971749 [TBL] [Abstract][Full Text] [Related]
8. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models. Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670 [TBL] [Abstract][Full Text] [Related]
9. 3D printed bioceramic scaffolds: Adjusting pore dimension is beneficial for mandibular bone defects repair. Qin H; Wei Y; Han J; Jiang X; Yang X; Wu Y; Gou Z; Chen L J Tissue Eng Regen Med; 2022 Apr; 16(4):409-421. PubMed ID: 35156316 [TBL] [Abstract][Full Text] [Related]
10. Form and functional repair of long bone using 3D-printed bioactive scaffolds. Tovar N; Witek L; Atria P; Sobieraj M; Bowers M; Lopez CD; Cronstein BN; Coelho PG J Tissue Eng Regen Med; 2018 Sep; 12(9):1986-1999. PubMed ID: 30044544 [TBL] [Abstract][Full Text] [Related]
11. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. Roosa SM; Kemppainen JM; Moffitt EN; Krebsbach PH; Hollister SJ J Biomed Mater Res A; 2010 Jan; 92(1):359-68. PubMed ID: 19189391 [TBL] [Abstract][Full Text] [Related]
12. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution. Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972 [TBL] [Abstract][Full Text] [Related]
14. Repair of Critical-Sized Long Bone Defects Using Dipyridamole-Augmented 3D-Printed Bioactive Ceramic Scaffolds. Witek L; Alifarag AM; Tovar N; Lopez CD; Cronstein BN; Rodriguez ED; Coelho PG J Orthop Res; 2019 Dec; 37(12):2499-2507. PubMed ID: 31334868 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model. Lee SH; Lee KG; Hwang JH; Cho YS; Lee KS; Jeong HJ; Park SH; Park Y; Cho YS; Lee BK Mater Sci Eng C Mater Biol Appl; 2019 May; 98():949-959. PubMed ID: 30813102 [TBL] [Abstract][Full Text] [Related]
16. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520 [TBL] [Abstract][Full Text] [Related]
17. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Pati F; Song TH; Rijal G; Jang J; Kim SW; Cho DW Biomaterials; 2015 Jan; 37():230-41. PubMed ID: 25453953 [TBL] [Abstract][Full Text] [Related]
18. Improved Bone Regeneration in Rabbit Bone Defects Using 3D Printed Composite Scaffolds Functionalized with Osteoinductive Factors. Teotia AK; Dienel K; Qayoom I; van Bochove B; Gupta S; Partanen J; Seppälä J; Kumar A ACS Appl Mater Interfaces; 2020 Oct; 12(43):48340-48356. PubMed ID: 32993288 [TBL] [Abstract][Full Text] [Related]
19. A Novel Bone Substitute with High Bioactivity, Strength, and Porosity for Repairing Large and Load-Bearing Bone Defects. Li JJ; Dunstan CR; Entezari A; Li Q; Steck R; Saifzadeh S; Sadeghpour A; Field JR; Akey A; Vielreicher M; Friedrich O; Roohani-Esfahani SI; Zreiqat H Adv Healthc Mater; 2019 Apr; 8(8):e1801298. PubMed ID: 30773833 [TBL] [Abstract][Full Text] [Related]
20. Three-Dimensional-Printed Poly-L-Lactic Acid Scaffolds with Different Pore Sizes Influence Periosteal Distraction Osteogenesis of a Rabbit Skull. Zhao D; Jiang W; Wang Y; Wang C; Zhang X; Li Q; Han D Biomed Res Int; 2020; 2020():7381391. PubMed ID: 32382570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]