These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30536644)

  • 21.
    Cai L; He W; Xue X; Huang J; Zhou K; Zhou X; Xu Z; Yu G
    Natl Sci Rev; 2021 Dec; 8(12):nwaa298. PubMed ID: 34987835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly over Si/SiO
    Pang J; Mendes RG; Wrobel PS; Wlodarski MD; Ta HQ; Zhao L; Giebeler L; Trzebicka B; Gemming T; Fu L; Liu Z; Eckert J; Bachmatiuk A; Rümmeli MH
    ACS Nano; 2017 Feb; 11(2):1946-1956. PubMed ID: 28117971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of surface oxidation of Cu substrates on the growth kinetics of graphene by chemical vapor deposition.
    Chang RJ; Lee CH; Lee MK; Chen CW; Wen CY
    Nanoscale; 2017 Feb; 9(6):2324-2329. PubMed ID: 28134390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties.
    Ambrosi A; Pumera M
    Nanoscale; 2014 Jan; 6(1):472-6. PubMed ID: 24217345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation and healing of vacancies in graphene chemical vapor deposition (CVD) growth.
    Wang L; Zhang X; Chan HL; Yan F; Ding F
    J Am Chem Soc; 2013 Mar; 135(11):4476-82. PubMed ID: 23444843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Situ Investigation of the Motion Behavior of Graphene on Liquid Copper.
    Wang L; Ding Y; Wang X; Lai R; Zeng M; Fu L
    Adv Sci (Weinh); 2021 Sep; 8(17):e2100334. PubMed ID: 34240577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene from fingerprints: exhausting the performance of liquid precursor deposition.
    Müller F; Grandthyll S; Gsell S; Weinl M; Schreck M; Jacobs K
    Langmuir; 2014 Jun; 30(21):6114-9. PubMed ID: 24807530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical vapour deposition of graphene on copper-nickel alloys: the simulation of a thermodynamic and kinetic approach.
    Al-Hilfi SH; Derby B; Martin PA; Whitehead JC
    Nanoscale; 2020 Jul; 12(28):15283-15294. PubMed ID: 32647854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu.
    Xin X; Xu C; Zhang D; Liu Z; Ma W; Qian X; Chen ML; Du J; Cheng HM; Ren W
    ACS Appl Mater Interfaces; 2019 May; 11(19):17629-17636. PubMed ID: 31026138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The transition metal surface dependent methane decomposition in graphene chemical vapor deposition growth.
    Wang X; Yuan Q; Li J; Ding F
    Nanoscale; 2017 Aug; 9(32):11584-11589. PubMed ID: 28770913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. What are the active carbon species during graphene chemical vapor deposition growth?
    Shu H; Tao XM; Ding F
    Nanoscale; 2015 Feb; 7(5):1627-34. PubMed ID: 25553809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of Twinned Graphene Polycrystals.
    Dong J; Geng D; Liu F; Ding F
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7723-7727. PubMed ID: 30968518
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Rein V; Gao H; Heenen HH; Sghaier W; Manikas AC; Tsakonas C; Saedi M; Margraf JT; Galiotis C; Renaud G; Konovalov OV; Groot IMN; Reuter K; Jankowski M
    ACS Nano; 2024 May; 18(19):12503-12511. PubMed ID: 38688475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: from controllable growth to material characterization.
    Yen WC; Chen YZ; Yeh CH; He JH; Chiu PW; Chueh YL
    Sci Rep; 2014 May; 4():4739. PubMed ID: 24810224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atmospheric Pressure Catalytic Vapor Deposition of Graphene on Liquid Sn and Cu-Sn Alloy Substrates.
    Saeed MA; Kinloch IA; Derby B
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33126626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates.
    Khan A; Islam SM; Ahmed S; Kumar RR; Habib MR; Huang K; Hu M; Yu X; Yang D
    Adv Sci (Weinh); 2018 Nov; 5(11):1800050. PubMed ID: 30479910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hexagon Flower Quantum Dot-like Cu Pattern Formation during Low-Pressure Chemical Vapor Deposited Graphene Growth on a Liquid Cu/W Substrate.
    Pham PV
    ACS Omega; 2018 Jul; 3(7):8036-8041. PubMed ID: 31458941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controllable Growth of the Graphene from Millimeter-Sized Monolayer to Multilayer on Cu by Chemical Vapor Deposition.
    Liu J; Huang Z; Lai F; Lin L; Xu Y; Zuo C; Zheng W; Qu Y
    Nanoscale Res Lett; 2015 Dec; 10(1):455. PubMed ID: 26612469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controllable poly-crystalline bilayered and multilayered graphene film growth by reciprocal chemical vapor deposition.
    Wu Q; Jung SJ; Jang SK; Lee J; Jeon I; Suh H; Kim YH; Lee YH; Lee S; Song YJ
    Nanoscale; 2015 Jun; 7(23):10357-61. PubMed ID: 26006180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of Growth Behavior and Electrical Properties of Graphene Grown on Solid and Liquid Copper by Chemical Vapor Deposition.
    Kim MS; Cho SY; Kim M; Kim KJ; Lee SH; Kim HM; Kim KB
    J Nanosci Nanotechnol; 2020 Jan; 20(1):316-323. PubMed ID: 31383173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.