These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30536644)

  • 41. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface.
    Zhang X; Wang L; Xin J; Yakobson BI; Ding F
    J Am Chem Soc; 2014 Feb; 136(8):3040-7. PubMed ID: 24499486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Large-scale quantification of CVD graphene surface coverage.
    Ambrosi A; Bonanni A; Sofer Z; Pumera M
    Nanoscale; 2013 Mar; 5(6):2379-87. PubMed ID: 23396554
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Morphology-Control Growth of Graphene Islands by Nonlinear Carbon Supply.
    Li J; Samad A; Schwingenschlögl U; Tian B; Lanza M; Zhang X
    Adv Mater; 2022 Nov; 34(44):e2206080. PubMed ID: 36052575
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres.
    Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H
    ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Realizing controllable graphene nucleation by regulating the competition of hydrogen and oxygen during chemical vapor deposition heating.
    Zhang H; Zhang Y; Zhang Y; Chen Z; Sui Y; Ge X; Deng R; Yu G; Jin Z; Liu X
    Phys Chem Chem Phys; 2016 Aug; 18(34):23638-42. PubMed ID: 27506467
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene.
    Lin L; Deng B; Sun J; Peng H; Liu Z
    Chem Rev; 2018 Sep; 118(18):9281-9343. PubMed ID: 30207458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy.
    Wang ZJ; Weinberg G; Zhang Q; Lunkenbein T; Klein-Hoffmann A; Kurnatowska M; Plodinec M; Li Q; Chi L; Schloegl R; Willinger MG
    ACS Nano; 2015 Feb; 9(2):1506-19. PubMed ID: 25584770
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Low-Temperature Chemical Vapor Deposition Growth of Graphene Layers on Copper Substrate Using Camphor Precursor.
    Kavitha K; Urade AR; Kaur G; Lahiri I
    J Nanosci Nanotechnol; 2020 Dec; 20(12):7698-7704. PubMed ID: 32711645
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene.
    Choi JK; Kwak J; Park SD; Yun HD; Kim SY; Jung M; Kim SY; Park K; Kang S; Kim SD; Park DY; Lee DS; Hong SK; Shin HJ; Kwon SY
    ACS Nano; 2015 Jan; 9(1):679-86. PubMed ID: 25494828
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An all-atom kinetic Monte Carlo model for chemical vapor deposition growth of graphene on Cu(1 1 1) substrate.
    Chen S; Gao J; Srinivasan BM; Zhang G; Sorkin V; Hariharaputran R; Zhang YW
    J Phys Condens Matter; 2020 Apr; 32(15):155401. PubMed ID: 31846953
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Selective growth of graphene in layer-by-layer via chemical vapor deposition.
    Park J; An H; Choi DC; Hussain S; Song W; An KS; Lee WJ; Lee N; Lee WG; Jung J
    Nanoscale; 2016 Aug; 8(30):14633-42. PubMed ID: 27436358
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Substrate considerations for graphene synthesis on thin copper films.
    Howsare CA; Weng X; Bojan V; Snyder D; Robinson JA
    Nanotechnology; 2012 Apr; 23(13):135601. PubMed ID: 22418897
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selective exfoliation of single-layer graphene from non-uniform graphene grown on Cu.
    Lim JY; Lee JH; Jang HS; Joo WJ; Hwang S; Whang D
    Nanotechnology; 2015 Nov; 26(45):455304. PubMed ID: 26491038
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface-Enhanced Raman Scattering Based on Controllable-Layer Graphene Shells Directly Synthesized on Cu Nanoparticles for Molecular Detection.
    Qiu H; Huo Y; Li Z; Zhang C; Chen P; Jiang S; Xu S; Ma Y; Wang S; Li H
    Chemphyschem; 2015 Oct; 16(14):2953-60. PubMed ID: 26266687
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spiral Growth of Adlayer Graphene.
    Sun H; Kong X; Park H; Liu F; Lee Z; Ding F
    Adv Mater; 2022 Mar; 34(12):e2107587. PubMed ID: 35048426
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nickel carbide as a source of grain rotation in epitaxial graphene.
    Jacobson P; Stöger B; Garhofer A; Parkinson GS; Schmid M; Caudillo R; Mittendorfer F; Redinger J; Diebold U
    ACS Nano; 2012 Apr; 6(4):3564-72. PubMed ID: 22414295
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.
    Feng Y; Chen K
    Nanotechnology; 2015 Jan; 26(3):035302. PubMed ID: 25549272
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper.
    Gottlieb S; Wöhrl N; Schulz S; Buck V
    Springerplus; 2016; 5():568. PubMed ID: 27247865
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct Growth of Graphene on Insulator Using Liquid Precursor Via an Intermediate Nanostructured State Carbon Nanotube.
    Nayak PK
    Nanoscale Res Lett; 2019 Mar; 14(1):107. PubMed ID: 30903401
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isotropic Growth of Graphene toward Smoothing Stitching.
    Zeng M; Tan L; Wang L; Mendes RG; Qin Z; Huang Y; Zhang T; Fang L; Zhang Y; Yue S; Rümmeli MH; Peng L; Liu Z; Chen S; Fu L
    ACS Nano; 2016 Jul; 10(7):7189-96. PubMed ID: 27403842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.