BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30536717)

  • 1. Label-Free Metabolic Classification of Single Cells in Droplets Using the Phasor Approach to Fluorescence Lifetime Imaging Microscopy.
    Ma N; Kamalakshakurup G; Aghaamoo M; Lee AP; Digman MA
    Cytometry A; 2019 Jan; 95(1):93-100. PubMed ID: 30536717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy.
    Lee DH; Li X; Ma N; Digman MA; Lee AP
    Lab Chip; 2018 May; 18(9):1349-1358. PubMed ID: 29638231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry.
    Alturkistany F; Nichani K; Houston KD; Houston JP
    Cytometry A; 2019 Jan; 95(1):70-79. PubMed ID: 30369063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Method for Detecting Circulating Tumor Cells Based on the Measurement of Single-Cell Metabolism in Droplet-Based Microfluidics.
    Del Ben F; Turetta M; Celetti G; Piruska A; Bulfoni M; Cesselli D; Huck WT; Scoles G
    Angew Chem Int Ed Engl; 2016 Jul; 55(30):8581-4. PubMed ID: 27247024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue.
    Stringari C; Cinquin A; Cinquin O; Digman MA; Donovan PJ; Gratton E
    Proc Natl Acad Sci U S A; 2011 Aug; 108(33):13582-7. PubMed ID: 21808026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Platform for Parallel Single Cell Analysis for Diagnostic Applications.
    Le Gac S
    Methods Mol Biol; 2017; 1547():187-209. PubMed ID: 28044297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autofluorescence imaging identifies tumor cell-cycle status on a single-cell level.
    Heaster TM; Walsh AJ; Zhao Y; Hiebert SW; Skala MC
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28485124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Enzyme Mapping of Cellular Metabolism by Phasor-Analyzed Label-Free NAD(P)H Fluorescence Lifetime Imaging.
    Leben R; Köhler M; Radbruch H; Hauser AE; Niesner RA
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31703416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free active single-cell encapsulation enabled by microvalve-based on-demand droplet generation and real-time image processing.
    Wang Y; Wang Y; Wang X; Sun W; Yang F; Yao X; Pan T; Li B; Chu J
    Talanta; 2024 Aug; 276():126299. PubMed ID: 38788384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developments in label-free microfluidic methods for single-cell analysis and sorting.
    Carey TR; Cotner KL; Li B; Sohn LL
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Jan; 11(1):e1529. PubMed ID: 29687965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy.
    Alfonso-García A; Smith TD; Datta R; Luu TU; Gratton E; Potma EO; Liu WF
    J Biomed Opt; 2016 Apr; 21(4):46005. PubMed ID: 27086689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DEPArray™ system: An automatic image-based sorter for isolation of pure circulating tumor cells.
    Di Trapani M; Manaresi N; Medoro G
    Cytometry A; 2018 Dec; 93(12):1260-1266. PubMed ID: 30551261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic fingerprinting of bacteria by fluorescence lifetime imaging microscopy.
    Bhattacharjee A; Datta R; Gratton E; Hochbaum AI
    Sci Rep; 2017 Jun; 7(1):3743. PubMed ID: 28623341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Cell Droplet Microfluidic Screening for Antibodies Specifically Binding to Target Cells.
    Shembekar N; Hu H; Eustace D; Merten CA
    Cell Rep; 2018 Feb; 22(8):2206-2215. PubMed ID: 29466744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput single-cell DNA sequencing of acute myeloid leukemia tumors with droplet microfluidics.
    Pellegrino M; Sciambi A; Treusch S; Durruthy-Durruthy R; Gokhale K; Jacob J; Chen TX; Geis JA; Oldham W; Matthews J; Kantarjian H; Futreal PA; Patel K; Jones KW; Takahashi K; Eastburn DJ
    Genome Res; 2018 Sep; 28(9):1345-1352. PubMed ID: 30087104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the physiology of viable but non-culturable bacteria by microfluidics and time-lapse microscopy.
    Bamford RA; Smith A; Metz J; Glover G; Titball RW; Pagliara S
    BMC Biol; 2017 Dec; 15(1):121. PubMed ID: 29262826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet microfluidics--a tool for single-cell analysis.
    Joensson HN; Andersson Svahn H
    Angew Chem Int Ed Engl; 2012 Dec; 51(49):12176-92. PubMed ID: 23180509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smart Droplet Microfluidic System for Single-Cell Selective Lysis and Real-Time Sorting Based on Microinjection and Image Recognition.
    Yu Z; Jin J; Chen S; Shui L; Chen H; Shi L; Zhu Y
    Anal Chem; 2023 Aug; 95(34):12875-12883. PubMed ID: 37581609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.