These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 30536733)
1. A Versatile Dynamic Light Scattering Strategy for the Sensitive Detection of Plant MicroRNAs Based on Click-Chemistry-Amplified Aggregation of Gold Nanoparticles. Lu X; Fan W; Feng Q; Qi Y; Liu C; Li Z Chemistry; 2019 Feb; 25(7):1701-1705. PubMed ID: 30536733 [TBL] [Abstract][Full Text] [Related]
2. A versatile dynamic light scattering strategy for the sensitive detection of microRNAs based on plasmonic core-satellites nanoassembly coupled with strand displacement reaction. Wang G; Yu M; Wang G Biosens Bioelectron; 2019 Aug; 138():111319. PubMed ID: 31108381 [TBL] [Abstract][Full Text] [Related]
3. An Enzyme-Free MicroRNA Assay Based On Fluorescence Counting of Click Chemical Ligation-Illuminated Magnetic Nanoparticles with Total Internal Reflection Fluorescence Microscopy. Qi Y; Lu X; Feng Q; Fan W; Liu C; Li Z ACS Sens; 2018 Dec; 3(12):2667-2674. PubMed ID: 30456947 [TBL] [Abstract][Full Text] [Related]
4. Click Chemical Ligation-Initiated On-Bead DNA Polymerization for the Sensitive Flow Cytometric Detection of 3'-Terminal 2'-O-Methylated Plant MicroRNA. Fan W; Qi Y; Qiu L; He P; Liu C; Li Z Anal Chem; 2018 Apr; 90(8):5390-5397. PubMed ID: 29600844 [TBL] [Abstract][Full Text] [Related]
5. Exponential amplification reaction and triplex DNA mediated aggregation of gold nanoparticles for sensitive colorimetric detection of microRNA. Wei S; Chen G; Jia X; Mao X; Chen T; Mao D; Zhang W; Xiong W Anal Chim Acta; 2020 Jan; 1095():179-184. PubMed ID: 31864620 [TBL] [Abstract][Full Text] [Related]
6. Colorimetric detection of sequence-specific microRNA based on duplex-specific nuclease-assisted nanoparticle amplification. Wang Q; Li RD; Yin BC; Ye BC Analyst; 2015 Sep; 140(18):6306-12. PubMed ID: 26258182 [TBL] [Abstract][Full Text] [Related]
7. Bacteria-Instructed Click Chemistry between Functionalized Gold Nanoparticles for Point-of-Care Microbial Detection. Mou XZ; Chen XY; Wang J; Zhang Z; Yang Y; Shou ZX; Tu YX; Du X; Wu C; Zhao Y; Qiu L; Jiang P; Chen C; Huang DS; Li YQ ACS Appl Mater Interfaces; 2019 Jul; 11(26):23093-23101. PubMed ID: 31184853 [TBL] [Abstract][Full Text] [Related]
8. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Liu R; Wang Q; Li Q; Yang X; Wang K; Nie W Biosens Bioelectron; 2017 Jan; 87():433-438. PubMed ID: 27589408 [TBL] [Abstract][Full Text] [Related]
9. Dual approach for the colorimetric determination of unamplified microRNAs by using citrate capped gold nanoparticles. Nossier AI; Abdelzaher H; Matboli M; Eissa S Mikrochim Acta; 2018 Mar; 185(4):236. PubMed ID: 29594755 [TBL] [Abstract][Full Text] [Related]
10. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction. Liu L; Xia N; Liu H; Kang X; Liu X; Xue C; He X Biosens Bioelectron; 2014 Mar; 53():399-405. PubMed ID: 24201003 [TBL] [Abstract][Full Text] [Related]
11. Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles. Borghei YS; Hosseini M; Ganjali MR; Ju H Mikrochim Acta; 2018 May; 185(6):286. PubMed ID: 29737423 [TBL] [Abstract][Full Text] [Related]
12. High sensitivity surface plasmon resonance biosensor for detection of microRNA and small molecule based on graphene oxide-gold nanoparticles composites. Li Q; Wang Q; Yang X; Wang K; Zhang H; Nie W Talanta; 2017 Nov; 174():521-526. PubMed ID: 28738618 [TBL] [Abstract][Full Text] [Related]
13. A Novel Design Combining Isothermal Exponential Amplification and Gold-Nanoparticles Visualization for Rapid Detection of miRNAs. Jiang J; Zhang B; Zhang C; Guan Y Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373308 [TBL] [Abstract][Full Text] [Related]
14. Determination of hypoxia-inducible factor-1 by using a ratiometric colorimetric test based on click-mediated growth of gold nanoparticles. Chen H; Sun Y; Li Y; Zhao J; Cao Y Mikrochim Acta; 2018 Sep; 185(10):451. PubMed ID: 30209641 [TBL] [Abstract][Full Text] [Related]
15. Double-loop hairpin probe and doxorubicin-loaded gold nanoparticles for the ultrasensitive electrochemical sensing of microRNA. Tao Y; Yin D; Jin M; Fang J; Dai T; Li Y; Li Y; Pu Q; Xie G Biosens Bioelectron; 2017 Oct; 96():99-105. PubMed ID: 28475957 [TBL] [Abstract][Full Text] [Related]
16. Dual cycle amplification and dual signal enhancement assisted sensitive SERS assay of MicroRNA. Wu Y; Li Y; Han H; Zhao C; Zhang X Anal Biochem; 2019 Jan; 564-565():16-20. PubMed ID: 30312618 [TBL] [Abstract][Full Text] [Related]
17. An enzyme-free flow cytometric bead assay for the sensitive detection of microRNAs based on click nucleic acid ligation-mediated signal amplification. Qi Y; Qiu L; Fan W; Liu C; Li Z Analyst; 2017 Aug; 142(16):2967-2973. PubMed ID: 28736786 [TBL] [Abstract][Full Text] [Related]
18. Triple-Input Molecular AND Logic Gates for Sensitive Detection of Multiple miRNAs. Ma X; Chen X; Tang Y; Yan R; Miao P ACS Appl Mater Interfaces; 2019 Nov; 11(44):41157-41164. PubMed ID: 31613595 [TBL] [Abstract][Full Text] [Related]
19. Direct competitive ELISA enhanced by dynamic light scattering for the ultrasensitive detection of aflatoxin B Zhan S; Hu J; Li Y; Huang X; Xiong Y Food Chem; 2021 Apr; 342():128327. PubMed ID: 33069525 [TBL] [Abstract][Full Text] [Related]
20. Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters. Miao X; Cheng Z; Ma H; Li Z; Xue N; Wang P Anal Chem; 2018 Jan; 90(2):1098-1103. PubMed ID: 29198110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]