BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 30537001)

  • 1. Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification.
    Omoregie AI; Ong DEL; Nissom PM
    Lett Appl Microbiol; 2019 Feb; 68(2):173-181. PubMed ID: 30537001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic biocementation: harnessing Comamonas and Bacillus ureolytic bacteria for enhanced sand stabilization.
    Rajasekar A; Zhao C; Wu S; Murava RT; Wilkinson S
    World J Microbiol Biotechnol; 2024 Jun; 40(7):229. PubMed ID: 38825655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ureolytic Prokaryotes in Soil: Community Abundance and Diversity.
    Oshiki M; Araki M; Hirakata Y; Hatamoto M; Yamaguchi T; Araki N
    Microbes Environ; 2018 Jul; 33(2):230-233. PubMed ID: 29709896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete.
    Vashisht R; Attri S; Sharma D; Shukla A; Goel G
    Microbiol Res; 2018 Mar; 207():226-231. PubMed ID: 29458858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomineralization processes of calcite induced by bacteria isolated from marine sediments.
    Wei S; Cui H; Jiang Z; Liu H; He H; Fang N
    Braz J Microbiol; 2015 Jun; 46(2):455-64. PubMed ID: 26273260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, Screening and Characterization of Ureolytic Bacteria from Cave Ornament.
    Rohmah E; Astuti Febria F; Hon Tjong D
    Pak J Biol Sci; 2021 Jan; 24(9):939-943. PubMed ID: 34585546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation.
    Achal V; Pan X
    Curr Microbiol; 2011 Mar; 62(3):894-902. PubMed ID: 21046391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosequestration of copper by bacteria isolated from an abandoned mine by using microbially induced calcite precipitation.
    Kang CH; Shin Y; Anbu P; Nam IH; So JS
    J Gen Appl Microbiol; 2016 Sep; 62(4):206-12. PubMed ID: 27488956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of two urease-producing and calcifying Bacillus spp. isolated from cement.
    Achal V; Mukherjee A; Reddy MS
    J Microbiol Biotechnol; 2010 Nov; 20(11):1571-6. PubMed ID: 21124064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation, differentiation and biodiversity of ureolytic bacteria of Qatari soil and their potential in microbially induced calcite precipitation (MICP) for soil stabilization.
    Bibi S; Oualha M; Ashfaq MY; Suleiman MT; Zouari N
    RSC Adv; 2018 Feb; 8(11):5854-5863. PubMed ID: 35539599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites.
    Dhami NK; Reddy MS; Mukherjee A
    J Microbiol Biotechnol; 2013 May; 23(5):707-14. PubMed ID: 23648862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil Aggregate Stratification of Ureolytic Microbiota Affects Urease Activity in an Inceptisol.
    Wang L; Luo X; Xiong X; Chen W; Hao X; Huang Q
    J Agric Food Chem; 2019 Oct; 67(42):11584-11590. PubMed ID: 31566380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogeochemical Changes During Bio-cementation Mediated by Stimulated and Augmented Ureolytic Microorganisms.
    Gomez MG; Graddy CMR; DeJong JT; Nelson DC
    Sci Rep; 2019 Aug; 9(1):11517. PubMed ID: 31395919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional gene-guided enrichment plus in situ microsphere cultivation enables isolation of new crucial ureolytic bacteria from the rumen of cattle.
    Liu S; Yu Z; Zhong H; Zheng N; Huws S; Wang J; Zhao S
    Microbiome; 2023 Apr; 11(1):76. PubMed ID: 37060083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and identification of bacteria to improve the strength of concrete.
    Krishnapriya S; Venkatesh Babu DL; G PA
    Microbiol Res; 2015 May; 174():48-55. PubMed ID: 25946328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment of low-pH rubber wastewater using ureolytic bacteria and the production of calcium carbonate precipitate for soil stabilization.
    Mallick S; Das S
    Chemosphere; 2024 May; 356():141913. PubMed ID: 38582164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Microbial Communities in Acidified, Sulfur Containing Soils.
    Czerwonka G; Konieczna I; Żarnowiec P; Zieliński A; Malinowska-Gniewosz A; Gałuszka A; Migaszewski Z; Kaca W
    Pol J Microbiol; 2017 Dec; 66(4):509-517. PubMed ID: 29319522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomineralization in Cave Bacteria-Popcorn and Soda Straw Crystal Formations, Morphologies, and Potential Metabolic Pathways.
    Koning K; McFarlane R; Gosse JT; Lawrence S; Carr L; Horne D; Van Wagoner N; Boddy CN; Cheeptham N
    Front Microbiol; 2022; 13():933388. PubMed ID: 35847116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocalcification by Piezotolerant Bacillus sp. NIOTVJ5 Isolated from Deep Sea Sediment and its Influence on the Strength of Concrete Specimens.
    Rangamaran VR; Shanmugam VK
    Mar Biotechnol (NY); 2019 Apr; 21(2):161-170. PubMed ID: 30535928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA.
    Lavoie KH; Winter AS; Read KJ; Hughes EM; Spilde MN; Northup DE
    PLoS One; 2017; 12(2):e0169339. PubMed ID: 28199330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.