These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30537183)

  • 1. Extreme Adaptation in Caves.
    Soares D; Niemiller ML
    Anat Rec (Hoboken); 2020 Jan; 303(1):15-23. PubMed ID: 30537183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hearing in Cavefishes.
    Soares D; Niemiller ML; Higgs DM
    Adv Exp Med Biol; 2016; 877():187-95. PubMed ID: 26515315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavefishes.
    Borowsky R
    Curr Biol; 2018 Jan; 28(2):R60-R64. PubMed ID: 29374443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats.
    Salvidio S; Palumbi G; Romano A; Costa A
    Naturwissenschaften; 2017 Apr; 104(3-4):20. PubMed ID: 28251304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cave-adapted evolution in the North American amblyopsid fishes inferred using phylogenomics and geometric morphometrics.
    Hart PB; Niemiller ML; Burress ED; Armbruster JW; Ludt WB; Chakrabarty P
    Evolution; 2020 May; 74(5):936-949. PubMed ID: 32187649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogeography, phylogeny, and morphological evolution of central Texas cave and spring salamanders.
    Bendik NF; Meik JM; Gluesenkamp AG; Roelke CE; Chippindale PT
    BMC Evol Biol; 2013 Sep; 13():201. PubMed ID: 24044519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The subterranean catfish
    Perez LN; Mariluz BR; Lorena J; Liu A; Sousa MP; Martins RAP; Taylor JS; Schneider PN
    Int J Dev Biol; 2021; 65(4-5-6):245-250. PubMed ID: 33372686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallels between two geographically and ecologically disparate cave invasions by the same species, Asellus aquaticus (Isopoda, Crustacea).
    Konec M; Prevorčnik S; Sarbu SM; Verovnik R; Trontelj P
    J Evol Biol; 2015 Apr; 28(4):864-75. PubMed ID: 25728816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental environment contributes to rapid trait shifts among newly colonized subterranean habitats.
    Swanson NE; Gluesenkamp AG; Donny AE; Mcgaugh SE
    Zool Res; 2023 Jul; 44(4):808-820. PubMed ID: 37464938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential rapid evolution of foot morphology in Italian plethodontid salamanders (Hydromantes strinatii) following the colonization of an artificial cave.
    Salvidio S; Crovetto F; Adams DC
    J Evol Biol; 2015 Jul; 28(7):1403-9. PubMed ID: 25975804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for hearing loss in amblyopsid cavefishes.
    Niemiller ML; Higgs DM; Soares D
    Biol Lett; 2013 Jun; 9(3):20130104. PubMed ID: 23536444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of isolation on contrasting phylogeographic patterns in two cave crustaceans.
    Pérez-Moreno JL; Balázs G; Wilkins B; Herczeg G; Bracken-Grissom HD
    BMC Evol Biol; 2017 Dec; 17(1):247. PubMed ID: 29216829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subterranean life: Behavior, metabolic, and some other adaptations of Astyanax cavefish.
    Maldonado E; Rangel-Huerta E; Rodriguez-Salazar E; Pereida-Jaramillo E; Martínez-Torres A
    J Exp Zool B Mol Dev Evol; 2020 Nov; 334(7-8):463-473. PubMed ID: 32346998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convergent Evolution of Unique Morphological Adaptations to a Subterranean Environment in Cave Millipedes (Diplopoda).
    Liu W; Golovatch S; Wesener T; Tian M
    PLoS One; 2017; 12(2):e0170717. PubMed ID: 28178274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution in caves: selection from darkness causes spinal deformities in teleost fishes.
    Torres-Dowdall J; Karagic N; Plath M; Riesch R
    Biol Lett; 2018 Jun; 14(6):. PubMed ID: 29875208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecomorphological convergence of cave communities.
    Trontelj P; Blejec A; Fišer C
    Evolution; 2012 Dec; 66(12):3852-65. PubMed ID: 23206142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cave beetle lineages gained genes before going down under: An example of repeated genomic exaptation?
    Friedrich M
    J Exp Zool B Mol Dev Evol; 2024 Jun; 342(4):380-384. PubMed ID: 38369877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae).
    Niemiller ML; Fitzpatrick BM; Shah P; Schmitz L; Near TJ
    Evolution; 2013 Mar; 67(3):732-48. PubMed ID: 23461324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics.
    Friedrich M
    Integr Comp Biol; 2013 Jul; 53(1):50-67. PubMed ID: 23720528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic Insights into the Loss of Vision in Molnár János Cave's Crustaceans.
    Pérez-Moreno JL; Balázs G; Bracken-Grissom HD
    Integr Comp Biol; 2018 Sep; 58(3):452-464. PubMed ID: 29931265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.