BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30537470)

  • 1. Efficiency of excitation energy trapping in the green photosynthetic bacterium Chlorobaculum tepidum.
    Ranjbar Choubeh R; Koehorst RBM; Bína D; Struik PC; Pšenčík J; van Amerongen H
    Biochim Biophys Acta Bioenerg; 2019 Feb; 1860(2):147-154. PubMed ID: 30537470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria.
    Huh J; Saikin SK; Brookes JC; Valleau S; Fujita T; Aspuru-Guzik A
    J Am Chem Soc; 2014 Feb; 136(5):2048-57. PubMed ID: 24405318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency of light harvesting in a photosynthetic bacterium adapted to different levels of light.
    Timpmann K; Chenchiliyan M; Jalviste E; Timney JA; Hunter CN; Freiberg A
    Biochim Biophys Acta; 2014 Oct; 1837(10):1835-46. PubMed ID: 24984074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex.
    Orf GS; Saer RG; Niedzwiedzki DM; Zhang H; McIntosh CL; Schultz JW; Mirica LM; Blankenship RE
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):E4486-93. PubMed ID: 27335466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryo-EM structure of the whole photosynthetic reaction center apparatus from the green sulfur bacterium
    Xie H; Lyratzakis A; Khera R; Koutantou M; Welsch S; Michel H; Tsiotis G
    Proc Natl Acad Sci U S A; 2023 Jan; 120(5):e2216734120. PubMed ID: 36693097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence of quantum transport in photosynthetic light-harvesting complexes.
    Panitchayangkoon G; Voronine DV; Abramavicius D; Caram JR; Lewis NH; Mukamel S; Engel GS
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):20908-12. PubMed ID: 22167798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design principles of photosynthetic light-harvesting.
    Fleming GR; Schlau-Cohen GS; Amarnath K; Zaks J
    Faraday Discuss; 2012; 155():27-41; discussion 103-14. PubMed ID: 22470965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ mapping of the energy flow through the entire photosynthetic apparatus.
    Dostál J; Pšenčík J; Zigmantas D
    Nat Chem; 2016 Jul; 8(7):705-10. PubMed ID: 27325098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of excitation and trapping conditions in photosynthetic environment-assisted energy transport.
    León-Montiel Rde J; Kassal I; Torres JP
    J Phys Chem B; 2014 Sep; 118(36):10588-94. PubMed ID: 25141219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ultrastructure of Chlorobaculum tepidum revealed by cryo-electron tomography.
    Kudryashev M; Aktoudianaki A; Dedoglou D; Stahlberg H; Tsiotis G
    Biochim Biophys Acta; 2014 Oct; 1837(10):1635-42. PubMed ID: 24950126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient two-step excitation energy transfer in artificial light-harvesting antenna based on bacteriochlorophyll aggregates.
    Malina T; Bína D; Collins AM; Alster J; Pšenčík J
    J Photochem Photobiol B; 2024 May; 254():112891. PubMed ID: 38555841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereochemical conversion of C3-vinyl group to 1-hydroxyethyl group in bacteriochlorophyll c by the hydratases BchF and BchV: adaptation of green sulfur bacteria to limited-light environments.
    Harada J; Teramura M; Mizoguchi T; Tsukatani Y; Yamamoto K; Tamiaki H
    Mol Microbiol; 2015 Dec; 98(6):1184-98. PubMed ID: 26331578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of Energy and Electron Transfer in the FMO-Reaction Center Core Complex from the Phototrophic Green Sulfur Bacterium Chlorobaculum tepidum.
    He G; Niedzwiedzki DM; Orf GS; Zhang H; Blankenship RE
    J Phys Chem B; 2015 Jul; 119(26):8321-9. PubMed ID: 26061391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of Light-Harvesting Aggregates in Individual Chlorosomes.
    Günther LM; Jendrny M; Bloemsma EA; Tank M; Oostergetel GT; Bryant DA; Knoester J; Köhler J
    J Phys Chem B; 2016 Jun; 120(24):5367-76. PubMed ID: 27240572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.
    Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR
    Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria.
    Adolphs J; Renger T
    Biophys J; 2006 Oct; 91(8):2778-97. PubMed ID: 16861264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation energy transfer in Chlamydomonas reinhardtii deficient in the PSI core or the PSII core under conditions mimicking state transitions.
    Wlodarczyk LM; Dinc E; Croce R; Dekker JP
    Biochim Biophys Acta; 2016 Jun; 1857(6):625-33. PubMed ID: 26946087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of energy conversion in reaction center core complexes of the green sulfur bacterium Prosthecochloris aestuarii at low temperature.
    Neerken S; Schmidt KA; Aartsma TJ; Amesz J
    Biochemistry; 1999 Oct; 38(40):13216-22. PubMed ID: 10529194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excited states and trapping in reaction center complexes of the green sulfur bacterium Prosthecochloris aestuarii.
    Neerken S; Permentier HP; Francke C; Aartsma TJ; Amesz J
    Biochemistry; 1998 Jul; 37(30):10792-7. PubMed ID: 9692969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy landscape of the intact and destabilized FMO antennas from C. tepidum and the L122Q mutant: Low temperature spectroscopy and modeling study.
    Khmelnitskiy A; Kell A; Reinot T; Saer RG; Blankenship RE; Jankowiak R
    Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):165-173. PubMed ID: 29198987
    [