These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30537585)

  • 1. Phytoextraction of copper from a contaminated soil using arable and vegetable crops.
    Napoli M; Cecchi S; Grassi C; Baldi A; Zanchi CA; Orlandini S
    Chemosphere; 2019 Mar; 219():122-129. PubMed ID: 30537585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of soil polluted by nickel using agricultural crops.
    Giordani C; Cecchi S; Zanchi C
    Environ Manage; 2005 Nov; 36(5):675-81. PubMed ID: 16215654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of copper bioaccumulation and translocation in Jatropha curcas grown in a contaminated soil.
    Ahmadpour P; Soleimani M; Ahmadpour F; Abdu A
    Int J Phytoremediation; 2014; 16(5):454-68. PubMed ID: 24912228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies of cadmium and copper uptake and translocation in different plant species growing near an E-waste dismantling site at Wenling, China.
    Li JJ; Zhao XQ; Wang JL; Shen RF
    Environ Sci Pollut Res Int; 2021 Nov; 28(44):62562-62571. PubMed ID: 34212328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica.
    Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K
    Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper.
    Saleem MH; Kamran M; Zhou Y; Parveen A; Rehman M; Ahmar S; Malik Z; Mustafa A; Ahmad Anjum RM; Wang B; Liu L
    J Environ Manage; 2020 Mar; 257():109994. PubMed ID: 31868646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of phosphorous fertilization on copper phytoextraction and antioxidant defenses in castor bean (Ricinus communis L.).
    Huang G; Rizwan MS; Ren C; Guo G; Fu Q; Zhu J; Hu H
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):115-123. PubMed ID: 27882491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens.
    Jiang LY; Yang XE; He ZL
    Chemosphere; 2004 Jun; 55(9):1179-87. PubMed ID: 15081758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chelate-assisted phytoaccumulation: growth of Helianthus annuus L., Vigna radiata (L.) R. Wilczek and Pennisetum glaucum (L.) R. Br. in soil spiked with varied concentrations of copper.
    Mishra SR; Chandra R; Prusty BAK
    Environ Sci Pollut Res Int; 2020 Feb; 27(5):5074-5084. PubMed ID: 31848952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molybdenum (Mo) increases endogenous phenolics, proline and photosynthetic pigments and the phytoremediation potential of the industrially important plant Ricinus communis L. for removal of cadmium from contaminated soil.
    Hadi F; Ali N; Fuller MP
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20408-20430. PubMed ID: 27457556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of high dose copper on plant growth and mineral nutrient (Zn, Fe, Mg, K, Ca) uptake in spinach.
    Liu Z; Bai Y; Luo L; Wan J; Wang W; Zhao G
    Environ Sci Pollut Res Int; 2021 Jul; 28(28):37471-37481. PubMed ID: 33713267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the potential of different jute varieties for phytoremediation of copper-contaminated soil.
    Saleem MH; Rehman M; Kamran M; Afzal J; Noushahi HA; Liu L
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):30367-30377. PubMed ID: 32462620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of low molecular weight organic acids on Cu accumulation by castor bean and soil enzyme activities.
    Huang G; You J; Zhou X; Ren C; Islam MS; Hu H
    Ecotoxicol Environ Saf; 2020 Oct; 203():110983. PubMed ID: 32678760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Case study on antiretroviral drugs uptake from soil irrigated with contaminated water: Bio-accumulation and bio-translocation to roots, stem, leaves, and fruits.
    Kunene PN; Mahlambi PN
    Environ Pollut; 2023 Feb; 319():121004. PubMed ID: 36608725
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Jahan-Nejati S; Jowkar-Tangkarami M; Taei-Semiromi J
    Int J Phytoremediation; 2021; 23(12):1212-1221. PubMed ID: 33825562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dieldrin uptake by vegetable crops grown in contaminated soils.
    Donnarumma L; Pompi V; Faraci A; Conte E
    J Environ Sci Health B; 2009 Jun; 44(5):449-54. PubMed ID: 20183049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ricinus communis L. A Value Added Crop for Remediation of Cadmium Contaminated Soil.
    Bauddh K; Singh K; Singh RP
    Bull Environ Contam Toxicol; 2016 Feb; 96(2):265-9. PubMed ID: 26464392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil.
    Shaheen SM; Rinklebe J
    Environ Geochem Health; 2015 Dec; 37(6):953-67. PubMed ID: 26040974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.