BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30537823)

  • 1. Rigorous Free Energy Perturbation Approach to Estimating Relative Binding Affinities between Ligands with Multiple Protonation and Tautomeric States.
    de Oliveira C; Yu HS; Chen W; Abel R; Wang L
    J Chem Theory Comput; 2019 Jan; 15(1):424-435. PubMed ID: 30537823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multistate Method to Efficiently Account for Tautomerism and Protonation in Alchemical Free-Energy Calculations.
    Champion C; Hünenberger PH; Riniker S
    J Chem Theory Comput; 2024 May; 20(10):4350-4362. PubMed ID: 38742760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 2. Computational titration and pH effects in molecular models of neuraminidase-inhibitor complexes.
    Fornabaio M; Cozzini P; Mozzarelli A; Abraham DJ; Kellogg GE
    J Med Chem; 2003 Oct; 46(21):4487-500. PubMed ID: 14521411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction to "Rigorous Free Energy Perturbation Approach to Estimating Relative Binding Affinities between Ligands with Multiple Protonation and Tautomeric States".
    de Oliveira C; Yu HS; Chen W; Abel R; Wang L
    J Chem Theory Comput; 2019 Oct; 15(10):5758. PubMed ID: 31550159
    [No Abstract]   [Full Text] [Related]  

  • 5. Protein-Ligand Binding Free Energy Calculations with FEP.
    Wang L; Chambers J; Abel R
    Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of variations of ligand protonation and tautomerism on protein-ligand recognition and binding energy landscape.
    Todorov NP; Monthoux PH; Alberts IL
    J Chem Inf Model; 2006; 46(3):1134-42. PubMed ID: 16711733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of tautomeric and protomeric binding modes by free energy calculations. A case study for the structure based optimization of D-amino acid oxidase inhibitors.
    Orgován Z; Ferenczy GG; Steinbrecher T; Szilágyi B; Bajusz D; Keserű GM
    J Comput Aided Mol Des; 2018 Feb; 32(2):331-345. PubMed ID: 29335871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.
    Wang L; Deng Y; Wu Y; Kim B; LeBard DN; Wandschneider D; Beachy M; Friesner RA; Abel R
    J Chem Theory Comput; 2017 Jan; 13(1):42-54. PubMed ID: 27933808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Standard state free energies, not pK
    Gunner MR; Murakami T; Rustenburg AS; Işık M; Chodera JD
    J Comput Aided Mol Des; 2020 May; 34(5):561-573. PubMed ID: 32052350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2.
    Athanasiou C; Vasilakaki S; Dellis D; Cournia Z
    J Comput Aided Mol Des; 2018 Jan; 32(1):21-44. PubMed ID: 29119352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in binding free energies calculations: QM/MM-based free energy perturbation method for drug design.
    Rathore RS; Sumakanth M; Reddy MS; Reddanna P; Rao AA; Erion MD; Reddy MR
    Curr Pharm Des; 2013; 19(26):4674-86. PubMed ID: 23260025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Calculation of Relative Binding Free Energies between Ligands with Different Net Charges.
    Chen W; Deng Y; Russell E; Wu Y; Abel R; Wang L
    J Chem Theory Comput; 2018 Dec; 14(12):6346-6358. PubMed ID: 30375870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free energy calculations to estimate ligand-binding affinities in structure-based drug design.
    Reddy MR; Reddy CR; Rathore RS; Erion MD; Aparoy P; Reddy RN; Reddanna P
    Curr Pharm Des; 2014; 20(20):3323-37. PubMed ID: 23947646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycogen phosphorylase inhibitors: a free energy perturbation analysis of glucopyranose spirohydantoin analogues.
    Archontis G; Watson KA; Xie Q; Andreou G; Chrysina ED; Zographos SE; Oikonomakos NG; Karplus M
    Proteins; 2005 Dec; 61(4):984-98. PubMed ID: 16245298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards predictive ligand design with free-energy based computational methods?
    Foloppe N; Hubbard R
    Curr Med Chem; 2006; 13(29):3583-608. PubMed ID: 17168725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free Energy Calculations for Protein-Ligand Binding Prediction.
    Jespers W; Åqvist J; Gutiérrez-de-Terán H
    Methods Mol Biol; 2021; 2266():203-226. PubMed ID: 33759129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
    Wittayanarakul K; Hannongbua S; Feig M
    J Comput Chem; 2008 Apr; 29(5):673-85. PubMed ID: 17849388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the Roles of Protonation and Electronic Polarization in Absolute Binding Affinity Simulations.
    King E; Qi R; Li H; Luo R; Aitchison E
    J Chem Theory Comput; 2021 Apr; 17(4):2541-2555. PubMed ID: 33764050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing Drug Discovery through Enhanced Free Energy Calculations.
    Abel R; Wang L; Harder ED; Berne BJ; Friesner RA
    Acc Chem Res; 2017 Jul; 50(7):1625-1632. PubMed ID: 28677954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of protonation and tautomerization in relative binding affinity prediction: a comparison of AMBER TI and Schrödinger FEP.
    Hu Y; Sherborne B; Lee TS; Case DA; York DM; Guo Z
    J Comput Aided Mol Des; 2016 Jul; 30(7):533-9. PubMed ID: 27480697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.