BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30537933)

  • 1. Structure, clustering and functional insights of repeats configurations in the upstream promoter region of the human coding genes.
    Tobar-Tosse F; Veléz PE; Ocampo-Toro E; Moreno PA
    BMC Genomics; 2018 Dec; 19(Suppl 8):862. PubMed ID: 30537933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-random genomic divergence in repetitive sequences of human and chimpanzee in genes of different functional categories.
    Shankar R; Chaurasia A; Ghosh B; Chekmenev D; Cheremushkin E; Kel A; Mukerji M
    Mol Genet Genomics; 2007 Apr; 277(4):441-55. PubMed ID: 17375324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual clustering of Alu repeats within the 5'-flanking region of the human lysozyme gene.
    Riccio ML; Rossolini GM
    DNA Seq; 1993; 4(2):129-34. PubMed ID: 8173077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GREAM: A Web Server to Short-List Potentially Important Genomic Repeat Elements Based on Over-/Under-Representation in Specific Chromosomal Locations, Such as the Gene Neighborhoods, within or across 17 Mammalian Species.
    Chandrashekar DS; Dey P; Acharya KK
    PLoS One; 2015; 10(7):e0133647. PubMed ID: 26208093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and distribution of repetitive elements in association with genes in the human genome.
    Liang KC; Tseng JT; Tsai SJ; Sun HS
    Comput Biol Chem; 2015 Aug; 57():29-38. PubMed ID: 25748288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repetitive DNA elements, nucleosome binding and human gene expression.
    Huda A; Mariño-Ramírez L; Landsman D; Jordan IK
    Gene; 2009 May; 436(1-2):12-22. PubMed ID: 19393174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of long sequence alignments to study the evolution and regulation of mammalian globin gene clusters.
    Hardison R; Miller W
    Mol Biol Evol; 1993 Jan; 10(1):73-102. PubMed ID: 8383794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Distribution of Alu repeats along the human genome: formation of clusters and features of insertion regions].
    Shakhmuradov IA; Kolchanov NA; Kapitonov VV
    Mol Biol (Mosk); 1989; 23(2):526-36. PubMed ID: 2549397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonrandom distribution of alu elements in genes of various functional categories: insight from analysis of human chromosomes 21 and 22.
    Grover D; Majumder PP; B Rao C; Brahmachari SK; Mukerji M
    Mol Biol Evol; 2003 Sep; 20(9):1420-4. PubMed ID: 12832639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA clustering and genome complexity.
    Dios F; Barturen G; Lebrón R; Rueda A; Hackenberg M; Oliver JL
    Comput Biol Chem; 2014 Dec; 53 Pt A():71-8. PubMed ID: 25182383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes.
    Polak P; Domany E
    BMC Genomics; 2006 Jun; 7():133. PubMed ID: 16740159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A knowledgebase of the human Alu repetitive elements.
    Mallona I; Jordà M; Peinado MA
    J Biomed Inform; 2016 Apr; 60():77-83. PubMed ID: 26827622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tri-nucleotide repeats and their association with genes in rice genome.
    Zhang Z; Xue Q
    Biosystems; 2005 Dec; 82(3):248-56. PubMed ID: 16226835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A set of Alu-free frequent decamers from mammalian genomes enriched in transcription factor signals.
    Gambari R; Volinia S; Nesti C; Scapoli C; Barrai I
    Comput Appl Biosci; 1994 Sep; 10(5):501-8. PubMed ID: 7828065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats.
    Viswanathan P; Murphy K; Julien B; Garza AG; Kroos L
    J Bacteriol; 2007 May; 189(10):3738-50. PubMed ID: 17369305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global analysis of inverted repeat sequences in human gene promoters reveals their non-random distribution and association with specific biological pathways.
    Brázda V; Bartas M; Lýsek J; Coufal J; Fojta M
    Genomics; 2020 Jul; 112(4):2772-2777. PubMed ID: 32234431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals.
    Reneker J; Shyu CR
    BMC Bioinformatics; 2005 May; 6():111. PubMed ID: 15869708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STaRRRT: a table of short tandem repeats in regulatory regions of the human genome.
    Bolton KA; Ross JP; Grice DM; Bowden NA; Holliday EG; Avery-Kiejda KA; Scott RJ
    BMC Genomics; 2013 Nov; 14():795. PubMed ID: 24228761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition-sensitive analysis of the human genome for regulatory signals.
    Kel-Margoulis OV; Tchekmenev D; Kel AE; Goessling E; Hornischer K; Lewicki-Potapov B; Wingender E
    In Silico Biol; 2003; 3(1-2):145-71. PubMed ID: 12954097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long interspersed L1 repeats in rabbit DNA are homologous to L1 repeats of rodents and primates in an open-reading-frame region.
    Demers GW; Brech K; Hardison RC
    Mol Biol Evol; 1986 May; 3(3):179-90. PubMed ID: 3444399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.