BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30538297)

  • 21. The HSP90 inhibitor NVP-AUY922 inhibits growth of HER2 positive and trastuzumab-resistant breast cancer cells.
    Canonici A; Qadir Z; Conlon NT; Collins DM; O'Brien NA; Walsh N; Eustace AJ; O'Donovan N; Crown J
    Invest New Drugs; 2018 Aug; 36(4):581-589. PubMed ID: 29396630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HER2-positive breast cancer cells expressing elevated FAM83A are sensitive to FAM83A loss.
    Bartel CA; Jackson MW
    PLoS One; 2017; 12(5):e0176778. PubMed ID: 28463969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Defective Cyclin B1 Induction in Trastuzumab-emtansine (T-DM1) Acquired Resistance in HER2-positive Breast Cancer.
    Sabbaghi M; Gil-Gómez G; Guardia C; Servitja S; Arpí O; García-Alonso S; Menendez S; Arumi-Uria M; Serrano L; Salido M; Muntasell A; Martínez-García M; Zazo S; Chamizo C; González-Alonso P; Madoz-Gúrpide J; Eroles P; Arribas J; Tusquets I; Lluch A; Pandiella A; Rojo F; Rovira A; Albanell J
    Clin Cancer Res; 2017 Nov; 23(22):7006-7019. PubMed ID: 28821558
    [No Abstract]   [Full Text] [Related]  

  • 24. Increased erbB3 promotes erbB2/neu-driven mammary tumor proliferation and co-targeting of erbB2/erbB3 receptors exhibits potent inhibitory effects on breast cancer cells.
    Lyu H; Huang J; Edgerton SM; Thor AD; He Z; Liu B
    Int J Clin Exp Pathol; 2015; 8(6):6143-56. PubMed ID: 26261492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. KDM5 family as therapeutic targets in breast cancer: Pathogenesis and therapeutic opportunities and challenges.
    Li CY; Wang W; Leung CH; Yang GJ; Chen J
    Mol Cancer; 2024 May; 23(1):109. PubMed ID: 38769556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heregulin-expressing HER2-positive breast and gastric cancer exhibited heterogeneous susceptibility to the anti-HER2 agents lapatinib, trastuzumab and T-DM1.
    Nonagase Y; Yonesaka K; Kawakami H; Watanabe S; Haratani K; Takahama T; Takegawa N; Ueda H; Tanizaki J; Hayashi H; Yoshida T; Takeda M; Chiba Y; Tamura T; Nakagawa K; Tsurutani J
    Oncotarget; 2016 Dec; 7(51):84860-84871. PubMed ID: 27768588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of somatic PI3K pathway and ERBB family mutations on pathological complete response (pCR) in HER2-positive breast cancer patients who received neoadjuvant HER2-targeted therapies.
    Toomey S; Eustace AJ; Fay J; Sheehan KM; Carr A; Milewska M; Madden SF; Teiserskiene A; Kay EW; O'Donovan N; Gallagher W; Grogan L; Breathnach O; Walshe J; Kelly C; Moulton B; Kennedy MJ; Gullo G; Hill AD; Power C; Duke D; Hambly N; Crown J; Hennessy BT
    Breast Cancer Res; 2017 Jul; 19(1):87. PubMed ID: 28750640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of the Dysregulation of miR-23b-3p, miR-195-5p, miR-656-5p, and miR-340-5p in Trastuzumab Resistance of HER2-Positive Breast Cancer Cells and System Biology Approach to Predict Their Targets Involved in Resistance.
    Rezaei Z; Sebzari A; Kordi-Tamandani DM; Dastjerdi K
    DNA Cell Biol; 2019 Feb; 38(2):184-192. PubMed ID: 30702337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GDNF induces RET-SRC-HER2-dependent growth in trastuzumab-sensitive but SRC-independent growth in resistant breast tumor cells.
    Gardaneh M; Shojaei S; Kaviani A; Behnam B
    Breast Cancer Res Treat; 2017 Apr; 162(2):231-241. PubMed ID: 28116540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trastuzumab enhances the anti-tumor effects of the histone deacetylase inhibitor sodium butyrate on a HER2-overexpressing breast cancer cell line.
    Chen W; Wei F; Xu J; Wang Y; Chen L; Wang J; Guan X
    Int J Mol Med; 2011 Dec; 28(6):985-91. PubMed ID: 21887460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer.
    Li W; Zhai L; Wang H; Liu C; Zhang J; Chen W; Wei Q
    Oncotarget; 2016 May; 7(19):27778-86. PubMed ID: 27034004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tyrosine kinase inhibitors as modulators of trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity in breast cancer cell lines.
    Collins DM; Gately K; Hughes C; Edwards C; Davies A; Madden SF; O'Byrne KJ; O'Donovan N; Crown J
    Cell Immunol; 2017 Sep; 319():35-42. PubMed ID: 28735814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cleavage of the extracellular domain of junctional adhesion molecule-A is associated with resistance to anti-HER2 therapies in breast cancer settings.
    Leech AO; Vellanki SH; Rutherford EJ; Keogh A; Jahns H; Hudson L; O'Donovan N; Sabri S; Abdulkarim B; Sheehan KM; Kay EW; Young LS; Hill ADK; Smith YE; Hopkins AM
    Breast Cancer Res; 2018 Nov; 20(1):140. PubMed ID: 30458861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients.
    De Mattos-Arruda L; Bottai G; Nuciforo PG; Di Tommaso L; Giovannetti E; Peg V; Losurdo A; Pérez-Garcia J; Masci G; Corsi F; Cortés J; Seoane J; Calin GA; Santarpia L
    Oncotarget; 2015 Nov; 6(35):37269-80. PubMed ID: 26452030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A systematic review of dual targeting in HER2-positive breast cancer.
    Kümler I; Tuxen MK; Nielsen DL
    Cancer Treat Rev; 2014 Mar; 40(2):259-70. PubMed ID: 24080156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in HER2 positive breast cancer epigenetics: Susceptibility and therapeutic strategies.
    Singla H; Ludhiadch A; Kaur RP; Chander H; Kumar V; Munshi A
    Eur J Med Chem; 2017 Dec; 142():316-327. PubMed ID: 28800870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CD147 knockdown improves the antitumor efficacy of trastuzumab in HER2-positive breast cancer cells.
    Xiong L; Ding L; Ning H; Wu C; Fu K; Wang Y; Zhang Y; Liu Y; Zhou L
    Oncotarget; 2016 Sep; 7(36):57737-57751. PubMed ID: 27363028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MicroRNA in combination with HER2-targeting drugs reduces breast cancer cell viability in vitro.
    Normann LS; Aure MR; Leivonen SK; Haugen MH; Hongisto V; Kristensen VN; Mælandsmo GM; Sahlberg KK
    Sci Rep; 2021 May; 11(1):10893. PubMed ID: 34035375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lapatinib, a dual EGFR and HER2 kinase inhibitor, selectively inhibits HER2-amplified human gastric cancer cells and is synergistic with trastuzumab in vitro and in vivo.
    Wainberg ZA; Anghel A; Desai AJ; Ayala R; Luo T; Safran B; Fejzo MS; Hecht JR; Slamon DJ; Finn RS
    Clin Cancer Res; 2010 Mar; 16(5):1509-19. PubMed ID: 20179222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A combination of trastuzumab and BAG-1 inhibition synergistically targets HER2 positive breast cancer cells.
    Papadakis E; Robson N; Yeomans A; Bailey S; Laversin S; Beers S; Sayan AE; Ashton-Key M; Schwaiger S; Stuppner H; Troppmair J; Packham G; Cutress R
    Oncotarget; 2016 Apr; 7(14):18851-64. PubMed ID: 26958811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.