These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 30538452)
21. pH and redox dual-responsive copolymer micelles with surface charge reversal for co-delivery of all- Zhang Y; Peng L; Chu J; Zhang M; Sun L; Zhong B; Wu Q Int J Nanomedicine; 2018; 13():6499-6515. PubMed ID: 30410335 [TBL] [Abstract][Full Text] [Related]
22. Heparosan-based self-assembled nanocarrier for zinc(II) phthalocyanine for use in photodynamic cancer therapy. Zha Z; Miao Y; Tang H; Herrera-Balandrano DD; Yin H; Wang SY Int J Biol Macromol; 2022 Oct; 219():31-43. PubMed ID: 35926671 [TBL] [Abstract][Full Text] [Related]
23. A pH-sensitive micelle composed of heparin, phospholipids, and histidine as the carrier of photosensitizers: Application to enhance photodynamic therapy of cancer. Debele TA; Mekuria SL; Tsai HC Int J Biol Macromol; 2017 May; 98():125-138. PubMed ID: 28137464 [TBL] [Abstract][Full Text] [Related]
24. Pentalysine beta-carbonylphthalocyanine zinc: an effective tumor-targeting photosensitizer for photodynamic therapy. Chen Z; Zhou S; Chen J; Deng Y; Luo Z; Chen H; Hamblin MR; Huang M ChemMedChem; 2010 Jun; 5(6):890-8. PubMed ID: 20458713 [TBL] [Abstract][Full Text] [Related]
26. Cupric-ion-promoted fabrication of oxygen-replenishing nanotherapeutics for synergistic chemo and photodynamic therapy against tumor hypoxia. He L; Xu F; Li Y; Jin H; Lo PC Acta Biomater; 2023 May; 162():57-71. PubMed ID: 36944404 [TBL] [Abstract][Full Text] [Related]
27. Anti-Melanoma Activity of Single Intratumoral Injection of ZnPc Micelles Mixed With in situ Gel in B16 Bearing Mouse. Xu JH; Zhang CX; Cang AJ; Yan R; Liu SW; Liu R; Zou NJ; Wang SN; Xu H; Li LS J Pharm Sci; 2024 Feb; 113(2):463-470. PubMed ID: 37852536 [TBL] [Abstract][Full Text] [Related]
28. Development of biocompatible and VEGF-targeted paclitaxel nanodrugs on albumin and graphene oxide dual-carrier for photothermal-triggered drug delivery in vitro and in vivo. Deng W; Qiu J; Wang S; Yuan Z; Jia Y; Tan H; Lu J; Zheng R Int J Nanomedicine; 2018; 13():439-453. PubMed ID: 29403275 [TBL] [Abstract][Full Text] [Related]
29. Nanoscale Covalent Organic Framework with Staggered Stacking of Phthalocyanines for Mitochondria-Targeted Photodynamic Therapy. Liu J; Kang DW; Fan Y; Nash GT; Jiang X; Weichselbaum RR; Lin W J Am Chem Soc; 2024 Jan; 146(1):849-857. PubMed ID: 38134050 [TBL] [Abstract][Full Text] [Related]
30. Long-circulating self-assembled cholesteryl albumin nanoparticles enhance tumor accumulation of hydrophobic anticancer drug. Battogtokh G; Kang JH; Ko YT Eur J Pharm Biopharm; 2015 Oct; 96():96-105. PubMed ID: 26212785 [TBL] [Abstract][Full Text] [Related]
31. Development and in vitro proof-of-concept of interstitially targeted zinc- phthalocyanine liposomes for photodynamic therapy. Broekgaarden M; de Kroon AI; Gulik TM; Heger M Curr Med Chem; 2014; 21(3):377-91. PubMed ID: 23931271 [TBL] [Abstract][Full Text] [Related]
32. Photodynamic therapy of hepatocellular carcinoma using tetra-triethyleneoxysulfonyl zinc phthalocyanine as photosensitizer. Ogbodu RO; Nitzsche B; Ma A; Atilla D; Gürek AG; Höpfner M J Photochem Photobiol B; 2020 Jul; 208():111915. PubMed ID: 32480203 [TBL] [Abstract][Full Text] [Related]
33. Targeted antitumor comparison study between dopamine self-polymerization and traditional synthesis for nanoparticle surface modification in drug delivery. Zhang M; Zou Y; Zuo C; Ao H; Guo Y; Wang X; Han M Nanotechnology; 2021 May; 32(30):. PubMed ID: 33862617 [TBL] [Abstract][Full Text] [Related]
34. ROS-Responsive Mitochondria-Targeting Blended Nanoparticles: Chemo- and Photodynamic Synergistic Therapy for Lung Cancer with On-Demand Drug Release upon Irradiation with a Single Light Source. Yue C; Yang Y; Zhang C; Alfranca G; Cheng S; Ma L; Liu Y; Zhi X; Ni J; Jiang W; Song J; de la Fuente JM; Cui D Theranostics; 2016; 6(13):2352-2366. PubMed ID: 27877240 [TBL] [Abstract][Full Text] [Related]
35. An organic solvent-free technology for the fabrication of albumin-based paclitaxel nanoparticles for effective cancer therapy. Zhao Y; Cai C; Liu M; Zhao Y; Pei W; Chu X; Zhang H; Wang Z; Han J Colloids Surf B Biointerfaces; 2019 Nov; 183():110394. PubMed ID: 31398618 [TBL] [Abstract][Full Text] [Related]
36. A Novel Multi-Effect Photosensitizer for Tumor Destruction via Multimodal Imaging Guided Synergistic Cancer Phototherapy. Sun K; Wang B; Li M; Ge Y; An L; Zeng D; Shen Y; Wang P; Li M; Hu X; Yu XA Int J Nanomedicine; 2024; 19():6377-6397. PubMed ID: 38952677 [TBL] [Abstract][Full Text] [Related]
37. Micelles of poly[oligo(ethylene glycol) methacrylate] as delivery vehicles for zinc phthalocyanine photosensitizers. Kara M; Kocaaga N; Akgul B; Abamor ES; Erdogmus A; Topuzogullari M; Acar S Nanotechnology; 2024 Sep; 35(47):. PubMed ID: 39173645 [TBL] [Abstract][Full Text] [Related]
38. Sorafenib-Conjugated Zinc Phthalocyanine Based Nanocapsule for Trimodal Therapy in an Orthotopic Hepatocellular Carcinoma Xenograft Mouse Model. Yu XN; Deng Y; Zhang GC; Liu J; Liu TT; Dong L; Zhu CF; Shen XZ; Li YH; Zhu JM ACS Appl Mater Interfaces; 2020 Apr; 12(15):17193-17206. PubMed ID: 32207914 [TBL] [Abstract][Full Text] [Related]
39. Near-Infrared Laser-Triggered, Self-Immolative Smart Polymersomes for in vivo Cancer Therapy. Tang Q; Hu P; Peng H; Zhang N; Zheng Q; He Y Int J Nanomedicine; 2020; 15():137-149. PubMed ID: 32021170 [TBL] [Abstract][Full Text] [Related]
40. Hybrid Nanoparticle for Co-delivering Paclitaxel and Dihydroartemisinin to Exhibit Synergic Anticancer Therapeutics. Tran BN; Ninh TTK; Do TT; Do PT; Nguyen CN Curr Cancer Drug Targets; 2024; 24(12):1250-1261. PubMed ID: 38321897 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]