BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30538891)

  • 1. Selective and super-selective C-arm based cone beam CT angiography (CBCTA) with DynaCT for CyberKnife radiosurgery planning of intracranial arteriovenous malformations (AVMs).
    Holmes OE; Szanto J; Abitbul VT; Al Mansoori T; Al-Qahtani H; Sinclair J; Iancu D; Malone S
    J Radiosurg SBRT; 2018; 5(4):305-313. PubMed ID: 30538891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic CT angiography for cyberknife radiosurgery planning of intracranial arteriovenous malformations: a technical/feasibility report.
    Haridass A; Maclean J; Chakraborty S; Sinclair J; Szanto J; Iancu D; Malone S
    Radiol Oncol; 2015 Jun; 49(2):192-9. PubMed ID: 26029032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frameless Co-Registration of Biplane 2D Digital Subtraction Angiography Whole Frames and 3D Rotational Angiography-Based Cone-Beam Computed Tomography Angiogram on Dedicated Software for Stereotactic Radiosurgery of Cranial Vascular Malformations.
    Ohtakara K; Izumi T; Tanahashi K; Kamomae T; Suzuki K
    Cureus; 2022 Aug; 14(8):e27983. PubMed ID: 36120229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planning evaluation of C-arm cone beam CT angiography for target delineation in stereotactic radiation surgery of brain arteriovenous malformations.
    Kang J; Huang J; Gailloud P; Rigamonti D; Lim M; Bernard V; Ehtiati T; Ford EC
    Int J Radiat Oncol Biol Phys; 2014 Oct; 90(2):430-7. PubMed ID: 25015197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereotactic radiosurgery planning based on time-resolved CTA for arteriovenous malformation: a case report and review of the literature.
    Turner RC; Lucke-Wold BP; Josiah D; Gonzalez J; Schmidt M; Tarabishy AR; Bhatia S
    Acta Neurochir (Wien); 2016 Aug; 158(8):1555-62. PubMed ID: 27334738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planning of gamma knife radiosurgery (GKR) for brain arteriovenous malformations using triple magnetic resonance angiography (triple-MRA).
    Rojas-Villabona A; Sokolska M; Solbach T; Grieve J; Rega M; Torrealdea F; Pizzini FB; De Vita E; Suzuki Y; Van Osch MJP; Biondetti E; Shmueli K; Atkinson D; Murphy M; Paddick I; Golay X; Kitchen N; Jäger HR
    Br J Neurosurg; 2022 Apr; 36(2):217-227. PubMed ID: 33645357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cyberknife radiosurgery for cerebral arteriovenous malformations: outlining of the radiosurgical target and obliteration].
    Wang X; Wang E; Mei G; Liu X; Zhu H; Pan L; Dai J; Wang Y
    Zhonghua Yi Xue Za Zhi; 2014 Oct; 94(37):2902-6. PubMed ID: 25549642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volumetric analysis of intracranial arteriovenous malformations contoured for CyberKnife radiosurgery with 3-dimensional rotational angiography vs computed tomography/magnetic resonance imaging.
    Veeravagu A; Hansasuta A; Jiang B; Karim AS; Gibbs IC; Chang SD
    Neurosurgery; 2013 Aug; 73(2):262-70. PubMed ID: 23615081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aortic arch injection with C-arm cone beam CT for radiosurgery treatment planning of cerebral arteriovenous malformations: technical note.
    Radvany MG; Ehtiati T; Huang J; Mahesh M; Gailloud P
    J Neurointerv Surg; 2012 Sep; 4(5):e28. PubMed ID: 22021404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target delineation for radiosurgery of a small brain arteriovenous malformation using high-resolution contrast-enhanced cone beam CT.
    van der Bom IM; Gounis MJ; Ding L; Kühn AL; Goff D; Puri AS; Wakhloo AK
    BMJ Case Rep; 2013 Aug; 2013():. PubMed ID: 23946527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target delineation for radiosurgery of a small brain arteriovenous malformation using high-resolution contrast-enhanced cone beam CT.
    van der Bom IM; Gounis MJ; Ding L; Kühn AL; Goff D; Puri AS; Wakhloo AK
    J Neurointerv Surg; 2014 Jun; 6(5):e34. PubMed ID: 23997121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of rotational angiography enables better dose planning in Gamma Knife radiosurgery for brain arteriovenous malformations.
    Hasegawa H; Hanakita S; Shin M; Kawashima M; Kin T; Takahashi W; Suzuki Y; Shinya Y; Ono H; Shojima M; Nakatomi H; Saito N
    J Neurosurg; 2018 Dec; 129(Suppl1):17-25. PubMed ID: 30544289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiosurgery for cerebral arteriovenous malformations: assessment of early phase magnetic resonance imaging and significance of gadolinium-DTPA enhancement.
    Morikawa M; Numaguchi Y; Rigamonti D; Kuroiwa T; Rothman MI; Zoarski GH; Simard JM; Eisenberg H; Amin PP
    Int J Radiat Oncol Biol Phys; 1996 Feb; 34(3):663-75. PubMed ID: 8621291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining stereotactic angiography and 3D time-of-flight magnetic resonance angiography in treatment planning for arteriovenous malformation radiosurgery.
    Bednarz G; Downes B; Werner-Wasik M; Rosenwasser RH
    Int J Radiat Oncol Biol Phys; 2000 Mar; 46(5):1149-54. PubMed ID: 10725625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Added Value of Selective Intra-arterial Cone-Beam CT Angiography in the Management of Visceral Artery Aneurysms.
    Berczeli M; Chinnadurai P; Veress DS; Diaz O; Bavare CS; Lumsden AB
    J Endovasc Ther; 2024 Apr; 31(2):214-222. PubMed ID: 35983655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of cone-beam computed tomography angiography in planning for gamma knife radiosurgery for arteriovenous malformations: a case series and early report.
    Safain MG; Rahal JP; Raval A; Rivard MJ; Mignano JE; Wu JK; Malek AM
    Neurosurgery; 2014 Jun; 74(6):682-95; discussion 695-6. PubMed ID: 24584136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation of Appearance of MRI Perinidal T2 Hyperintensity Signal and Eventual Nidus Obliteration Following Photon Radiosurgery of Brain AVMs: Combined Results of LINAC and Gamma Knife Centers.
    Abdelaziz O; Shereen A; Inoue T; Hirai H; Shima A
    J Neurol Surg A Cent Eur Neurosurg; 2019 May; 80(3):187-197. PubMed ID: 30895568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial experience with helical CT and 3D reconstruction in therapeutic planning of cerebral AVMs: comparison with 3D time-of-flight MRA and digital subtraction angiography.
    Tanaka H; Numaguchi Y; Konno S; Shrier DA; Shibata DK; Patel U
    J Comput Assist Tomogr; 1997; 21(5):811-7. PubMed ID: 9294581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obliteration dynamics in cerebral arteriovenous malformations after cyberknife radiosurgery: quantification with sequential nidus volumetry and 3-tesla 3-dimensional time-of-flight magnetic resonance angiography.
    Wowra B; Muacevic A; Tonn JC; Schoenberg SO; Reiser M; Herrmann KA
    Neurosurgery; 2009 Feb; 64(2 Suppl):A102-9. PubMed ID: 19165066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral arteriovenous malformations: improved nidus demarcation by means of dynamic tagging MR-angiography.
    Essig M; Engenhart R; Knopp MV; Bock M; Scharf J; Debus J; Wenz F; Hawighorst H; Schad LR; van Kaick G
    Magn Reson Imaging; 1996; 14(3):227-33. PubMed ID: 8725188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.