These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 30539375)
21. [Monitoring of farmland drought based on LST-LAI spectral feature space]. Sui XX; Qin QM; Dong H; Wang JL; Meng QY; Liu MC Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Jan; 33(1):201-5. PubMed ID: 23586256 [TBL] [Abstract][Full Text] [Related]
22. Vulnerability of native savanna trees and exotic Khaya senegalensis to seasonal drought. Arndt SK; Sanders GJ; Bristow M; Hutley LB; Beringer J; Livesley SJ Tree Physiol; 2015 Jul; 35(7):783-91. PubMed ID: 25934988 [TBL] [Abstract][Full Text] [Related]
23. Probability assessment of vegetation vulnerability to drought based on remote sensing data. Alamdarloo EH; Manesh MB; Khosravi H Environ Monit Assess; 2018 Nov; 190(12):702. PubMed ID: 30406494 [TBL] [Abstract][Full Text] [Related]
24. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. Coupel-Ledru A; Lebon É; Christophe A; Doligez A; Cabrera-Bosquet L; Péchier P; Hamard P; This P; Simonneau T J Exp Bot; 2014 Nov; 65(21):6205-18. PubMed ID: 25381432 [TBL] [Abstract][Full Text] [Related]
26. [An Analysis of the Spectrums between Different Canopy Structures Based on Hyperion Hyperspectral Data in a Temperate Forest of Northeast China]. Yu QZ; Wang SQ; Huang K; Zhou L; Chen DC Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1980-5. PubMed ID: 26717763 [TBL] [Abstract][Full Text] [Related]
27. Chaparral Shrub Hydraulic Traits, Size, and Life History Types Relate to Species Mortality during California's Historic Drought of 2014. Venturas MD; MacKinnon ED; Dario HL; Jacobsen AL; Pratt RB; Davis SD PLoS One; 2016; 11(7):e0159145. PubMed ID: 27391489 [TBL] [Abstract][Full Text] [Related]
28. Drought footprint on European ecosystems between 1999 and 2010 assessed by remotely sensed vegetation phenology and productivity. Ivits E; Horion S; Fensholt R; Cherlet M Glob Chang Biol; 2014 Feb; 20(2):581-93. PubMed ID: 24105971 [TBL] [Abstract][Full Text] [Related]
29. Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants to Monitor Arsenic Contamination. Bandaru V; Daughtry CS; Codling EE; Hansen DJ; White-Hansen S; Green CE Int J Environ Res Public Health; 2016 Jun; 13(6):. PubMed ID: 27322304 [TBL] [Abstract][Full Text] [Related]
30. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Roman DT; Novick KA; Brzostek ER; Dragoni D; Rahman F; Phillips RP Oecologia; 2015 Nov; 179(3):641-54. PubMed ID: 26130023 [TBL] [Abstract][Full Text] [Related]
31. [A Method to Reconstruct Surface Reflectance Spectrum from Multispectral Image Based on Canopy Radiation Transfer Model]. Zhao YG; Ma LL; Li CR; Zhu XH; Tang LL Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1763-9. PubMed ID: 26717721 [TBL] [Abstract][Full Text] [Related]
32. Response of net ecosystem gas exchange to a simulated precipitation pulse in a semi-arid grassland: the role of native versus non-native grasses and soil texture. Huxman TE; Cable JM; Ignace DD; Eilts JA; English NB; Weltzin J; Williams DG Oecologia; 2004 Oct; 141(2):295-305. PubMed ID: 14557868 [TBL] [Abstract][Full Text] [Related]
33. Health condition assessment for vegetation exposed to heavy metal pollution through airborne hyperspectral data. Banerjee BP; Raval S; Zhai H; Cullen PJ Environ Monit Assess; 2017 Nov; 189(12):604. PubMed ID: 29101574 [TBL] [Abstract][Full Text] [Related]
34. Monitoring plant response to phenanthrene using the red edge of canopy hyperspectral reflectance. Zhu L; Chen Z; Wang J; Ding J; Yu Y; Li J; Xiao N; Jiang L; Zheng Y; Rimmington GM Mar Pollut Bull; 2014 Sep; 86(1-2):332-341. PubMed ID: 25038982 [TBL] [Abstract][Full Text] [Related]
35. Variable hydraulic resistances and their impact on plant drought response modelling. Baert A; De Schepper V; Steppe K Tree Physiol; 2015 Apr; 35(4):439-49. PubMed ID: 25273815 [TBL] [Abstract][Full Text] [Related]
36. A case study for evaluating potential soil sensitivity in aridland systems. Peterman WL; Ferschweiler K Integr Environ Assess Manag; 2016 Apr; 12(2):388-96. PubMed ID: 26272449 [TBL] [Abstract][Full Text] [Related]
37. A Simulation Study Using Terrestrial LiDAR Point Cloud Data to Quantify Spectral Variability of a Broad-Leaved Forest Canopy. Cifuentes R; Van der Zande D; Salas-Eljatib C; Farifteh J; Coppin P Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30297651 [TBL] [Abstract][Full Text] [Related]
38. Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area. Zhang Y; Oren R; Kang S Tree Physiol; 2012 Mar; 32(3):262-79. PubMed ID: 22157418 [TBL] [Abstract][Full Text] [Related]
39. Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyperspectral data for different types of vegetation. Inoue Y; Guérif M; Baret F; Skidmore A; Gitelson A; Schlerf M; Darvishzadeh R; Olioso A Plant Cell Environ; 2016 Dec; 39(12):2609-2623. PubMed ID: 27650474 [TBL] [Abstract][Full Text] [Related]
40. Land Surface Model and Particle Swarm Optimization Algorithm Based on the Model-Optimization Method for Improving Soil Moisture Simulation in a Semi-Arid Region. Yang Q; Zuo H; Li W PLoS One; 2016; 11(3):e0151576. PubMed ID: 26991786 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]